研究発表要旨

9月13日(土)

3A01~3A17 A 会場 3B01~3B16 B 会場

3A01 液体シンチレーション測定を用いた海水中の放射性 Sr 迅速分析の検討 (金沢大院自然¹、金沢大理工²)

○渡辺良祐¹、上杉正樹²、酒井浩章²、横山明彦²

【はじめに】ストロンチウム 90 (⁹⁰Sr) は先の福島第一原子力発電所事故において、その放出挙動 から陸域への影響は少なかったが、冷却水に溶解したものが汚染水となり、地下への漏えいと海 洋への放出が続いている。現在、海水中の⁹⁰Sr の分析には文部科学省の放射能測定法(発煙硝酸 法)が用いられているが、危険で手順が多く迅速分析という点においては改善の余地がある。放 射性ストロンチウムの迅速定量法には、Sr を精製分離する方法と⁹⁰Sr の子孫核種⁹⁰Y を精製分離 する方法がある。そこで本研究では、Sr Rad-disk を用いた Sr の濃縮法、及び⁹⁰Y の沈殿濃縮法の 改善を試みた。また、測定法として液体シンチレーション(LSC)測定法により、チェレンコフ光測

定法及び抽出シンチレータを用いる方法を検討した。

実験

(a) Sr Rad-Disk を用いた分離・精製法

海水中で主に定量の妨害となる <u>Mg と Ca の分離</u>は、図 1 のような分離スキームによった。Sr の挙動は ⁸⁵Sr トレーサー(γ 線 514keV)を用いて確認した。クエン酸添加と pH の変化により、Ca と Sr を Mg、Na、K などから分離した。<u>Sr の精製</u>には、Sr を選択的に捕集できる Sr Rad Disk を用い、Ca から分離した。(b) ⁹⁰Y のリン酸イットリウム共沈分離と DDTC 精製法

Y は海水にほとんど含まれておらず、その水酸化物やリン酸 塩は水に不溶である。これらの性質をもとに Y 担体に放射性 Y を共沈濃縮する。Y の精製は測定を妨害する天然放射性核種(U, Th, Po, Pb)を除去するため、DDTC 溶媒抽出を行った。 (c) 液体シンチレーション測定法

測定において、HDEHP を用いた抽出シンチレータにより⁹⁰Sr と⁹⁰Yを抽出測定する条件と⁹⁰Yのみを抽出測定する条件を検討 した。また、⁹⁰Yの測定についてはチェレンコフ光測定によった。 【結果と考察】

図1の分離スキームによる⁸⁵Srの回収率は、84%が得られ、分離時間は約3.5時間であった。

(b) Y 分離法では、共存する天然の放射性核種を DDTC 溶媒により除去することで、迅速化を図ることができた。

(c) Sr と Y の弁別測定に抽出シンチレータを用いることを試みた。抽出水層の液性を変化させる ことで Sr と Y の抽出挙動が変化することが確認され、弁別測定が可能であることが分かった。

Examination of the rapid analysis of radioactive Sr isotopes in seawater using liquid scintillation counting WATANABE, R., UESUGI, M., SAKAI, H., YOKOYAMA, A.

図1 分離スキーム

I 1 3 3 3 3 3 3 3 3 3 4 3 4 </

(* 翌訊大客、*(耕) ハカトデトカロて立日、1 ペーイソトて・学大恵慈)

『至貞式豁、" 苏誘瀬 ແ 、」 ぺる お 鰰箕 ○

3A02

Prepared solution (equivalent to sea water 1L) 。式し薄出ら (Lumitomo 3M Ltd.) と比較した。

がとして、固体抽出分離剤を用いた Analig Sr-01 (IBC Advanced Technologies, Inc.) たんを水 目多発開の封神代な恵近・晟蘭へは全安のムウモンロイス封視坑お々我。るあつ訴込ぶ用動 法が使われている。これらの方法は、手順が慎雑で化学分離操作に時間がかり、劇毒物の 「血ှった」、「水劑前劑発、、水動交、大ト、おご、市役のムウモ、ロイス
⇒

· シーマモンシネ動をクストデジよは新出容式 育 ATC3 % 60.0 労 (0.5 。 うっお 行 き 神 代 い イ で Nal (Horiba Ltd.) で Har Well 型 Val (Horiba Ltd.) で Har ジョン (Horiba Ltd.) (Horiba Ltd.) (Horiba Ltd.) 菁砚。オサち菁砚をんやモンロイス、 ノ 通び Analig Sr-1 カラムあんど Empore^m RadDisk 、こし 実際 51 mcs () 学校 1 m c / 2 m l c / 2 m l c / 2 m し難容を過か。させち週がをんやぐいた猶炅 、J と 当 U は J (て つ D I < Hq U L J) HOBN を 漸 容 将馬る专ど時ごJI 水熱。专示多計艱糖代学出 い I.gif 。オノ 版計を特結るな異の 更新 ムウ く バイ、あするふ酷る響湯るよぶんやぐいたる けはコン諦熱糖代のムウモンロイス。オノ媒睛 駐んやシリカゴ採焼水オノセトパスを iS00

I-12 gilanA

Fig. 1 Procedure of Sr separation experiment by

ətenl3 🗲

⇒£luate

→ discard

noitulos badseW 🗲

Imos Atda %50.0

O_sH dtiw deeW

ImOL _EONH-MS diw dseW ₅ONH-ME of faulbA

O_sH dtiw dseW

Keep stationary at 1 night

1M-VaOH ca. 12 ml pH>10

₅ONH-M8 dtiw 9vlossiD

Im 25.65 noitulo2 slqms2

Filteration শ

1000 01 94691 Неат 80°С, 1Һ

№ 203 20⁸

শ

শ

xiM

[precipitate]

1

TW-HNO² 20^{wl} × 2

uunjoo

CL-01

BilenA

[supernatant]

Rapid determination of radiostrontium in water by solid extraction technique: part 1

。方でなく諸何欲量玄晟簡のムウモンロイス對根妹ひよ习老古のこ。方きご碼郵欲くこるき

【親実】

【言豁】

MINOWA, H., KATO, Y., OGATA, Y.

う用味再おえそたちし用動。るあう諸厄用商ご神代やくニーリクスのは境水部おお古のこ 。オーあう%17 51率菁姻ムウモンロイスの~ムラカ I-rS gilanA

, う囲踊の(%5.0-1.0 し 対 JI (料焼) g2-1 量 ム ウ ぐ 小 た の 中 料 焼 。 式 ゃ あ ゔ 間 日 2 お 間 報 式

し要ご111期1月会出で去たのこ、それパフトは4月間2時に111時期時代学出れで共行の来が

【察考5果諸】

。うめ永多率着观の~クストでおいるあムそせ、ひよは率出容、ノ量宝多

120% され動気順の影介し査以衡平学小棟城れ Y⁰⁸ - 12⁰⁸ の 影間 断 E 端。 方 し 気 順 ブ い 用 き (. bt J

3A03 □ 個相抽出法を用いた水試料中の放射性ストロンチウムの簡易測定法 II ○ 加藤結花¹、箕輪はるか²、緒方良至³

(日立アロカメディカル(株)¹、慈恵大学・アイソトープ²、名大院医³)

【緒言】

環境試料中の放射性ストロンチウムの分析には、イオン交換法、発煙硝酸法、シュウ酸塩 法が使われている。これらの方法は、手順が煩雑で化学分離操作に時間がかかり、劇毒物の 使用が必須である。我々は放射性ストロンチウムの安全かつ簡易・迅速な分析法の開発を目 的として、固体抽出分離剤を用いた Analig Sr-01 (IBC Advanced Technologies, Inc.) カラムを水 試料へ適用し、同様の分離剤を用いた Empore[™] Sr RadDisk (住友スリーエム) と比較した。前 報にて本分析法の有用性について報告し、本報では測定法について報告する。

【実験】

前報と同様の手順にて⁹⁰Sr をスパイクした模擬水試料を調製した。海水 1L に相当する試料 溶液からストロンチウムを沈殿させた後、沈殿を溶解し 2~3M HNO₃ 相当の溶液約 35ml に調 製して、Analig Sr-1 カラムあるいは Empore[™] RadDisk に通し、ストロンチウムを吸着させた。 測定方法としては、カラムは吸着したままの状態で、⁹⁰Sr を直接 well 型 NaI 検出器(Horiba) で計測した。また、⁹⁰Sr-⁹⁰Y 放射平衡後、EDTA 溶液で、カラムより Sr を溶出し、溶出液 1ml をカラムを同様の形状の注射筒に移し well 型 NaI で計測した。溶出液のうち 4ml を 16ml の 液体シンチレータに混和させ液体シンチレーションカウンタ LSC-6100(Hitachi Aloka Medical) にて計測した。RadDisk は、直接 20ml の液体シンチレータに混和させ LSC-6100 にて計測し それぞれスペクトル分析を行なった。

【結果と考察】

従来の方法では化学分離操作に約2週間か かっていたが、この方法で化学分離操作に要 した時間は2日間であり簡易・迅速な分析法 が可能となった(前報)。 Fig.1 に well 型 NaI 検出器、Fig.2 に LSC-6100 でのスペクトル分 析結果を示す。Analig Sr-1 カラムは放射平衡に 達した後、well 型 NaI 検出器で直接⁹⁰Sr を定 量することができた(Fig.1)。また、EDTAを用 いた溶出液の測定には、well型 NaI、LSC-6100 ともに利用可能であった。Empore[™] Sr RadDisk の場合は、液体シンチレータと直接混 和し、効率トレーサ法を用いて LSC-6100 を用 いて測定することで、放射平衡を待つことな く ⁹⁰Sr を迅速に定量を行うことができた。 Analig Sr-1 カラムでは、測定までに時間を要す るが、繰り返し使用可能なことから海水試料 の有用なスクリーニング方法の一つと言える。

Rapid determination of radiostrontium in water by solid extraction technique: part 2 KATO, Y., MINOWA, H., OGATA, Y.

3A04 溶媒抽出法による Cs、Sr の選択的抽出の検討

(東北大金研)〇永井満家、白崎謙次、坂本清志、山村朝雄

【諸言】

福島第一原子力発電所では、ウランの核分裂により派生したセシウム 137 やストロンチウム 90 が原子炉建屋外に流出し問題となっている。汚染水処理のため東京電力は ALPS を設置したが、この処理では減容が困難な固体の放射性廃棄物が発生する。

溶媒抽出法は金属イオンの有効な分離法の1つであり、抽出剤 としてクラウンエーテルを用いることで、酸性溶液からセシウム、 ストロンチウムを抽出できることが報告されている¹⁾²⁾。しかし 使用する希釈剤が可燃性で毒性が高いため、環境に与える影響が 大きい。我々は図1に示すようなハイドロフルオロカーボン (HFC)の1種であり、不燃性かつ毒性が低いHFC-43-10mee(バ ートレルXF)を希釈剤、OcPhCMPOを抽出剤とするウランの溶 媒抽出を報告している³⁾。本研究では図2に示すクラウンエーテ ル(DCH18C6)を抽出剤、HFCを希釈剤として水溶液からアル カリ会属示素。アルカリナ類会属示素の抽出をおこなった結果を

図3. PFTOUDAの構造式

カリ金属元素、アルカリ土類金属元素の抽出をおこなった結果を報告する。

【実験】

水相は金属元素を含む水溶液とし、有機相は DCH18C6 および図 3 に示すような協同効果 が期待できる抽出剤であるパーフルオロ-3,6,9-トリオキサウンデカン-1,11-二酸(PFTOUDA)、 もしくは OcPhCMPO を溶解した HFC(バートレル XH、バートレル MCA)とした。等量の 水相と有機相を混合し、25℃で振とうした。水相の金属元素の濃度を ICP-AES または原子吸 光装置で測定し、分配係数を比較した。

【結果】

PFTOUDA-バートレル XH 系、もしくは **PFTOUDA-**バートレル MCA 系で、Sr が抽出され た(表1)。当日はその他の実験条件や他元素の抽 出について紹介する。

表1.	抽出条件とス	トロンチウ	ムの分配比
<u> <u> 秋</u>1.</u>	加山木住とへ	ドロマノワ	ムッカ山

抽出剤	м. I. Г. Я.	補助剤(0.02 M)					
(0.02 M)	N- F 0 10	なし	OcPhCMPO	PFTOUDA			
	XF	×	0.02 ± 0.09	×			
DCH18C6	XH	0.03 ± 0.11	0.02 ± 0.13	5.88 ± 0.19			
	MCA	0.03 ± 0.13	0.02 ± 0.17	5.09 ± 0.22			

【謝辞】

本研究において、バートレルを提供してくださった三井・デュポンフロロケミカル(株) に厚く感謝申し上げます。

【参考文献】

1) R. A. Sachleben, et al., Sep. Sci. Technol., 32(1997)275.

2) K. K. Gupta, et al., Solvent Extr. Ion Exch., 21(2003)53.

3) T. YAMAMURA, et al., Journal of Nucl Sci and Tech, 47(2010)515.

Investigation of selective extraction of cesium and strontium by solvent extraction NAGAI, M., SHIRASAKI, K., SAKAMOTO, K., YAMAMURA, T.

3A05 つくばと飯舘村大気中の福島第一原発事故の放射性核種

 (国環研¹、ふくしま再生の会²、高エネ研³)〇土井妙子¹、高木麻衣¹、田中 敦¹、 菅野宗夫²、土器屋由紀子²、桝本和義³

【緒言】東日本大震災後の福島第一原子力発電所の事故により、大量の放射性物質が環境中に放出された。 2011 年 3 月 12 日の早朝、原発から放射性核種の放出が始まった。主な放出は 3 月 15 日と 16 日に起きた。 福島第一原発から南南西約 170kmの茨城県つくば市において 2011 年 3 月 15 日より大気エアロゾル中の放 射性核種濃度の測定を開始した 1)。2012 年 3 月からは福島第一原発から北西約 30 数キロメートルの福島県 相馬郡飯舘村の避難指示解除準備区域でも、大気エアロゾルの放射能測定を開始した。帰還に向けて、大 気エアロゾル中の¹³⁷Cs、¹³⁴Cs 濃度変化と粒径分布及びエアロゾル成分の変化をつくば市の大気中濃度と比 較して報告する。

【実験】大気試料は2012年3月20日から佐須滑にハイボリウムエアサンプラー(HV-700FまたはHV-1000F, 柴田科学)を地上(高さ1.5m)に設置し、毎分500Lの流速でおよそ1週間毎にフィルター交換を行った。 また、2012年9月8日からは同機種を飯舘村役場入口(伊丹沢)にも設置して、同様の試料採取を開始し た。大気試料は、石英繊維ろ紙(アドバンテック東洋QR-100)上に粒子状物質を捕集した。粒径別の大気 試料は12段の低圧アンダーセン型サンプラー(東京ダイレック,LP-20)により、2013年8月6日より、 全量大気採取と同じ場所(佐須滑)で地上にて4回採取した。大気試料中の放射性核種の定量は、国環研 の複数台のGe半導体検出器を用いた。放射性核種測定後のフィルターの一部は水抽出を行い、イオンクロ マトグラフィー(Thermo Fisher Scientific:ICS-2000)により水溶性イオン成分の測定を行った。つくばの大 気試料は2011年3月15日以降、つくばの国立環境研究所敷地内建物屋上(高さ10m)で同様の方法で捕 集を継続している。2011年7月以降、毎分200Lの流速で1週間毎にフィルターの交換を行った。放射性核 種の定量は高エネ研のGe半導体検出器で行った。

【結果・考察】図1につくばの大気中¹³⁷Cs、¹³⁴Cs 濃度の変化を示す。事故直後は最大 8Bq m⁻³ であったが、 現在は10⁵Bq m⁻³程度である。図2に飯舘村佐須と伊丹沢における大気中の¹³⁷Cs、¹³⁴Cs 濃度の変遷を示す。 佐須と伊丹沢はつくばのおよそ 10 倍の濃度の 10⁻⁴Bq m⁻³程度で、同じ濃度範囲の変動を示した。2012 年 4 月初めに佐須で高濃度を示した。これは宮城県丸森町の 2012 年 4 月初めの¹³⁷Cs、¹³⁴Cs 濃度のピークと同 期している。2013 年 3 月にも伊丹沢の¹³⁷Cs、¹³⁴Cs 濃度が高くなったが、佐須ではピークは観測されなかっ た。エアロゾル中の水溶性イオン成分の測定を行った。2013 年 3 月の役場のエアロゾルにはコンクリート

由来の Ca イオンの濃度が高かったため、役場周辺の除染作業 による局所的な現象と思われる。2013 年 8 月にも両地点の濃 度上昇があった。この時期、福島原発においてがれき撤去に よる放射性 Cs の飛散が確認されており、この気流の端が飯舘 村を通過したためと考えられる。¹³⁷Cs、¹³⁴Cs の粒径分布測定 では、1.2μm 以下の粒径には検出されなかった。

1) Doi., T, et al., J. Environ. Radioact. 122, 55-62, 2013.

Fukushima-derived radionuclides in the atmosphere observed in Tsukuba and Iitate DOI, T., TAKAGI, M., TANAKA, A., KANNO, M., DOKIYA, Y., MASUMOTO, K.

図 2.飯舘村佐須と伊丹沢の大気中¹³⁷Cs,¹³⁴Cs 濃度

3A06 東京電力福島第一原子力発電所土壌への放射性核種の移行 (JAEA) 〇 駒 義和

【緒言】東京電力福島第一原子力発電所の事故に伴い広域が汚染した。東京電力は2011年に敷 地土壌を分析し、核分裂生成物やアクチニドの放射性核種濃度を報告している¹⁾。燃料から 土壌への核種の移行ふるまいについて公開されている値を元に検討した。

【方法】土壌に見いだされた核種の原子数を燃料の組成により規格化、基準とする核種への相 対値を輸送比と定義する。分析された濃度と燃料の組成を用いて、次式により計算した。

 $T_{\rm X} = \frac{N_{\rm X,soil}/N_{\rm X,fuel}}{N_{\rm std,soil}/N_{\rm std,fuel}} = \frac{c_{\rm X,soil}/A_{\rm X,fuel}}{c_{\rm std,soil}/A_{\rm std,fuel}}$

ここで、*N* は原子数、*c*_{soil} は濃度 (Bq/m²)、*A* は放射能 (Bq)、添字の X は対象とする核種、 std は基準の核種、soil は土壌、fuel は核燃料をそれぞれ示す。濃度は敷地内の 3 か所を定め

て分析したデータを参照した。燃料組成は 西原らが計算により求めた値を用いた²⁾。 核種の減衰は、最初の爆発があった3月12 日に補正した。

【結果と考察】いくつかの核種について求め た輸送比をプロットして図に示す。半減期 を補正した結果、時間に対して一定の値と なる。これは、土壌の汚染は原子炉の水素 爆発を含め事故の初期段階の寄与が支配 的であることと整合する。輸送比の平均値 を表に示す。Csに対してIはより移行しや すく、一方 Sr、Pu と Am は反対である。 また、方角による差異が伺われる。測定さ れた核種について、輸送比の順序は、

 $I > Te > Cs > Ag \sim Sb > Mo \sim Ru > Ba > Sr$ $> Nb > Pu \sim Am \sim Cm$

であった。アクチニド (Pu, Am, Cm) とア ルカリ土類 (Sr, Ba) の値はそれぞれが近 く、化学的性質の影響が示唆される。U は 天然の寄与が大きく、事故による影響は観 測されていない。

図 グラウンド土壌に検出された核種の輸送比 表 3 か所の地点への輸送比^{*}

核種	グラウンド 西北西約 500 m	野鳥の森 西約 500 m	管理型産廃 処分場近傍
			南南西約 500 m
¹³¹ I	3.2	21	1.6
¹³⁴ Cs	1.0	0.98	0.99
⁹⁰ Sr	9.5×10^{-4}	0.0041	4.0×10^{-4}
²³⁸ Pu	2.3×10^{-5}	2.0×10^{-4}	4.5×10^{-6}
²⁴² Cm	1.5×10^{-5}	1.4×10^{-5}	4.3×10^{-6}

^{*1、2}号機スタックからの方角。

 東京電力株式会社, "福島第一原子力発電所構内における土壌中の放射性物質の検出状況について," プレスリリース, 平成23年3月28日, http://www.tepco.co.jp/cc/press/11032806-j.html (2011). 並びにこの続報.

2) 西原 健司, 岩元 大樹, 須山 賢也, "福島第一原子力発電所の燃料組成評価," JAEA-Data/Code 2012-018 (2012).

Transport of radionuclides to soil at Fukushima Daiichi NPS, TEPCO KOMA, Y.

3A07 福島県内のスギ林における表層土壌の特性と放射性セシウム分布

(原子力機構)○石井康雄, 佐々木祥人, 菊池直之, 渡邊貴善, 小田好博, 新里忠史

【緒言】

原子力機構では、福島県内における現地調査データに基づいて、山地森林からダム溜池や河川 等を通じて河口域、更には沿岸域までの放射性セシウム(Cs-134, 137;以下, 放射性 Cs)の移動を 予測し、この放射性 Cs の移動に起因する除染済みエリアの線量率の変化や、生活用水源への混入 等に対する技術情報や対策案等の提案を目的とした「福島長期環境動態研究(F-TRACE プロジェ クト)」を行っている。本報では、同プロジェクトの森林域を対象とした調査結果の一部を報告する。

森林域では、樹木上部の枝葉に付着していた放射性Csは落葉落枝または降雨に伴う林内雨、樹 皮表面を流れる水流(樹幹流)により林内の地表へ運搬されると考えられる。同プロジェクトによる 2013 - 2014年の調査結果では、林内雨には放射性Csがほとんど検出されず、一方で、樹幹流試料 には4.0 - 17.5 Bq L⁻¹のCs-137が含まれる事が報告されている¹⁾。そこで、樹幹近傍における土壌の 樹幹流の影響を調べるため、福島県阿武隈山地のスギ林において表層土壌についての調査を行っ た。

【調査・実験】

スギ立木の周囲2m×2m範囲を50 cmメッシュで分割し, NaIサーベイメータによる1 cm 表面線量率の測定とともに, 落葉落枝の堆積層(リター層)および深度0-5 cmの鉱質土壌層を採取した。 採取した土壌は送風型恒温器により40℃で乾燥後, pH(H₂O)や電気伝導率(EC)等の土壌特性デ ータの取得およびGe半導体検出器による放射性Cs濃度の分析を実施した。

【結果・考察】

図に表層土壌のpH(H₂O)および土壌中の放射性Cs濃度を示す(図中央の白四角がスギ立木)。 スギ立木近傍の土壌はpH(H₂O)が低く,特に低い領域については,降雨時に多量の樹幹流が目視 で確認された樹幹の方角と一致した。これは酸性度の高い樹幹流(pH ~ 3.9)の影響により土壌が 酸性化したものと考える。一方で,スギ立木からの距離と土壌中の放射性Cs濃度との関係について は、立木近傍で低い傾向があるものの,特に土壌pH(H₂O)が低い2地点において,放射性Cs濃度 が高いことがわかり,これは樹幹流に含まれる放射性Csの影響であると推察される。今後は放射性 Csの分布について,林内における初期放射性Cs沈着量,林内雨および cm単位の微地形や深度 方向など,他の因子の空間的不均質性を加味して総合的な評価を行う予定である。

【参考文献】

 阿部寛信,石井康雄,新 里忠史,三田地勝昭,渡邊 貴善,佐々木祥人(2014); 放射性物質の移動挙動評 価に係る森林における長期 モニタリング(その2),日本 地質学会第121年学術大会

Н	1	2	3	4	5	Cs- 134+137 kBq /kg	1	2	3	4	5
1	5.83	5.76	6	6.15	6.04	1	35.0	29.9	34.6	40.6	36.6
2	5.64	4.66	4.7	5.5	6.3	2	36.5	37.1	45.5	18.6	126.7
3	5.73	5.04		5.46	6.11	3	22.9	8.8		6.0	21.2
4	6.02	5.31	5.4	6	6.13	4	10.6	9.1	10.1	16.5	32.1
5	6.24	6.21	6.1	6.34	6.34	5	23.4	42.5	43.5	61.8	34.6

図 樹幹近傍表層土壌における(左)pH(H₂O)と(右)放射性 Cs 濃度 Properties and Distribution of Radioactive Caesium of the Surface Soil of Japanese Cedar Forest in Fukushima

ISHII, Y., SASAKI, Y., KIKUCHI, N., WATANABE, T., ODA, Y., NIIZATO, T.

3A08 懸 濁 態 及 び 溶 存 態 放 射 性 C s の 森 林 から 河 川 へ の 流 出 (原子力機構)〇竹内絵里奈、安藤麻里子、西村周作、中西貴宏、都築克紀、 小嵐淳、松永武

【諸言】東京電力福島第一原子力発電所の事故により放出された放射性 Cs は、現在も森林に 多く沈着しており、降雨などによる河川への流出が懸念されている。本研究では、降雨量な どの季節変動と放射性 Cs の流出挙動の相関を調べるために、放射性 Cs を連続的に捕集する 装置を設置し、森林から河川への放射性 Cs の流出量を粒径の異なる懸濁態と溶存態に分けて 評価を行った。連続的な測定を行うことで約1ヵ月の分解能で季節変動を見ることができ、 雨量や河川のデータと合わせて流出挙動を評価することが可能である。

【実験】試験対象地は、福島第一原発から南西約 67 km 離れたところに位置している北茨城市 の森林集水域内(面積約 0.7 km²、標高 580~720 m)の小河川である。本発表では 2012 年 11 月 から 2013 年 12 月にかけて観測を行った。懸濁物は、2 つのカートリッジフィルターハウジ ング(ADVANTEC 製)に孔径の異なるカートリッジフィルター(孔径 100 µm 及び 0.5 µm、 ADVANTEC 製)をそれぞれ 6 本ずつ入れ、河川水を通水させて捕集した。回収した懸濁物は、 4 つのサイズ(F1: 2000 µm 以上、F2: 500-2000 µm、F3: 75-500 µm、F4: 75 µm 以下)に篩別 した。溶存態 Cs は、Cs 吸着剤(AnfezhTM [1]、Eksorb 製)を充填した 2 本のポリ塩化ビニル製 カラムに通水させて捕集した。カートリッジフィルター及びカラムは、1 ヵ月毎に交換した。 各試料は乾燥させた後、Ge 半導体検出器(GEM25P4-70、ORTEC 製;LO-AX-51370/20P、ORTEC 製;GEM20 型、AMETEK 製)で γ 線測定を行った。

【結果及び考察】図 1-(a)は単位通水量あたりの懸濁態及び溶存態の¹³⁷Cs 放射能割合を示す。 夏~秋季(5~10 月)は降雨量が多く土砂が増えることから懸濁態 Cs の流出割合が多く、冬季

(12~4月)になると 溶存態 Cs の流出割 合が増加する傾向 が見られたが、1 年を通して懸濁態 の割合はいずれも 50%を超えていた。 図 1-(b)は懸濁熊中 の粒径別の¹³⁷Cs 放 射能分布を示す。 ほとんどが F4 で流 出していることを 示した。当日は、 放射性Cs流出量の 季節変動と環境因 子の関係について も議論する。

【参考文献】 [1] V. P. Remez et.al., *Appl. Radiat. Isot.*, Vol. 47, No. 9/10, 885-886 (1996).

Fluvial discharges of particulate and dissolved radiocesium from a forest catchment TAKEUCHI, E., ANDOH-ATARASHI, M., NISHIMURA, S., NAKANISHI, T., TSUDUKI, K., KOARASHI, J., MATSUNAGA, T.

環境中の放射性セシウム捕集におけるカリウム・アンモニウムイオンの影響 3A09 (東大 RIC¹、信大ヒト環²、熊大院生命³)〇桧垣正吾¹、廣田昌大²、伊藤茂樹³

【緒言】カリウム肥料は、土壌から農作物への放射性セシウムの移行を低減させる効果がある とされており、イネの汚染対策として水田への施肥を奨励する報告がある。また、セシウム の捕集にはプルシアンブルー(PB)が有効との報告があり、PBを利用した不織布製フィルタ ーは、ゼオライトとは異なり焼却減容できるため、除染で発生した汚染水への適用が自治体 により検討されている。我々は先行研究で、K⁺や NH₄⁺が存在する水溶液に汚染土壌を投入す ると放射性セシウムの溶出が促進される一方で、PB フィルターへの捕集を妨げることを報告 した⁽¹。本研究では、PB フィルターによる環境中放射性セシウム捕集への適用可能性を明ら かにするため、汚染された木材から抽出した放射性セシウムの K⁺や NH4⁺が存在する条件下に おける PB フィルターによる捕集効果を評価した。

【実験】原木シイタケ栽培に用いられるコナラ(¹³⁴Cs:160Bg/kg,¹³⁷Cs:440Bg/kg)が腐食した 腐植土と蒸留水を質量比1:2で密閉容器に入れて5日間室温で静置後、定性濾紙で濾過して 水溶液中に放射性セシウムを抽出させた。その後、PB フィルターによって濾過して溶液を定 量して捕集効率を求めた。比較のため、¹³⁷CsCl標準水溶液を蒸留水で希釈したものを用いて 同様の濾過を行い、捕集効率を求めた。

【結果】図にPBフィルターに よる放射性セシウム捕集効 率を示す。K⁺や NH₄⁺が存在 しない場合、腐植土から抽 出した放射性セシウムは、 ¹³⁷CsCl 標準水溶液中の放射 性セシウムと同様に、PBに よって捕集されやすく、2回 の捕集によってほぼ100%が 捕集された。

0

20

40

(%)

Decontamination Efficiency 60 'CsCl + K2SO4 100%' 'CsCl + (NH₄)SO₄ 100% 2 Cumulative Filtrations 図 PB フィルターによる放射性セシウムの捕集効率

137Cs from wood + wate

CsCl + water

CsCl + K₂SO₄ 1% CsCl + (NH₄)SO₄ 1%

CsCl + K₂SO₄ 45%

CsCl + (NH₄)SO₄ 45%

壌の構造中に入り込んだものや、有機物に結合したものとは異なる。一方、腐植土から抽出 された放射性セシウムの PB フィルターによる捕集効率は、キャリアフリーの¹³⁷Cs⁺と同程度 であることが明らかになった。

発表では、腐植土から抽出された放射性セシウムも K⁺や NH₄⁺が存在する条件下では、PB フィルターによる取り込む働きを妨害するか否かについても述べ、環境中放射性セシウム捕 集への適用可能性について報告する。

【参考文献】⁽¹ 廣田昌大、桧垣正吾、伊藤茂樹「プルシアンブルーを用いた汚染土壌・汚染水から のセシウム除去におけるカリウムイオン及びアンモニウムイオンの影響」、Proceedings of the 15th Workshop on Environmental Radioactivity (KEK Proceedings) (in press).

Influence of potassium and ammonium ion in filtering the environmental radiocesium HIGAKI, S., HIROTA, M., ITO, S.

3A10 茶樹中における放射性セシウムおよびトリチウムの移行挙動の解明

(静大院理¹、静大院農²)○湯山健太¹、佐藤美咲¹、鴨志田瑞穂²、一家 崇志²、 森田明雄²、近田拓未¹、大矢恭久¹

【緒言】原子力発電所事故時には様々な放射性核種が環境中に放出される。特に放射性セシウム (¹³⁷Cs)やトリチウム(³H)は半減期の長さから長期的な環境への影響が懸念されている。静岡 県は茶が特産物であり、食の安全性および風評被害防止の観点から茶樹中での放射性セシウムお よびトリチウムの移行挙動の理解が重要である。本研究では、¹³⁷Cs又は³Hを含んだ水耕液で栽 培した茶を用いて、茶樹中における¹³⁷Csと³Hの分布および飲用茶とした際の溶出挙動を、イメ ージングプレート(IP)および NaI (TI)シンチレーション検出器を用いて評価した。

【実験】試料として静岡県産の茶を用いた。茶は摘み取り後、束(1芯4葉)にまとめ、茎部を 塩化セシウム(¹³⁷CsCl)水溶液(74 Bq/mL)に2日間浸漬した。浸漬後、茶葉を水で洗い流し、 一部の試料をIPにて¹³⁷Csの分布を調べた。残りの試料は酵素失活のため殺青処理を行ったのち、 半分は手もみ処理を行い、すべての試料を 50 ℃のドライオーブンを用いて乾燥した。乾燥後、 茎と葉の分離を行い4種類の試料を作製した。試料に蓄積した¹³⁷Csを測定するために NaI(Tl)シ ンチレーション検出器にて測定を行った。各試料を 100 mL の水に浸漬した後、各試料中に残留し た¹³⁷Csを測定することで実験前の¹³⁷Cs含有量との差分をとることで¹³⁷Csの水への溶出挙動を測 定した。溶出温度はウォーターバスを用いて 25℃、50℃、75℃とし、溶出時間を 0 - 75000 秒まで 変化させた。

【結果・考察】¹³⁷Cs 溶液で栽培された茶の IP の結果から、吸い上げられた¹³⁷Cs は葉と比較し茎 中に多くの¹³⁷Cs が滞留していた。茎から水溶液として吸収しているにもかかわらず¹³⁷Cs はスポ ット状に分散していた。また、節(葉と茎の分岐しているところ)に特異的に集まっていること がわかった。飲用処理を行った茶において茎部分における¹³⁷Cs 滞留量は茶葉中の二倍以上であっ た。手もみ処理を行った試料では、殺青のみ行った試料よりも 1.5 倍程度¹³⁷Cs 量が多く検出され たことから、スポット状に分布している¹³⁷Cs が手もみ処理により、試料全体に均一に分布し、見 かけの単位重量当たりの放射能が増加したと考えられる。図に殺青のみ行った茶葉試料の茎部位 における各温度での¹³⁷Cs 溶出挙動を示す。¹³⁷Cs の放出割合は浸漬時間増加に伴い増加したが、 75000 秒の浸漬時間にもかかわらず¹³⁷Cs の約 10%は茎中に残留した。このことから茶葉に残留し

た¹³⁷Cs は、茶への吸着及び有機結合型セシウ ムとして残留していたと示唆した。¹³⁷Cs 溶出 に関する活性化エネルギーをアレニウスの式 から算出したところ 0.093 eV であった。過去 の報告より茶表面から水への¹³⁷Cs 溶出の活性 化エネルギーは 0.045 eV である。本実験では 細胞内からの¹³⁷Cs 溶出が考えられるため表面 からの¹³⁷Cs 溶出挙動と比較し、活性化エネル ギーが大きくなったことが示唆された。本発表 では、トリチウム水を用いて栽培した茶樹中に おける ³H の移行挙動に関しても同様に評価し、 議論する予定である。

Elucidation of migration behavior of radioactive cesium and tritium in tea plants YUYAMA, K., SATO, M., KAMOSHITA, M., IKKA, T., MORITA, A., CHIKADA, T., OYA, Y.

3A11 地衣類の放射性セシウム保持特性と降下物量指標としての適用可能性

(JAEA 福島¹、科博²)〇土肥輝美¹、大村嘉人²、藤原健壮¹、飯島和毅¹

地衣類は、菌類と藻類の共生体であり、(i)樹皮や岩上などに着生し、陸上生態系に広く分 布する、(ii)維管束植物のような根を持たず、大気中の水分や浮遊物を直接取り込み保持する、 (iii)年間成長量が少なく寿命は数十年と比較的長い、などの性質を持つ。このような特性から、 地衣類は大気圏核実験やチェルノブイリ事故など、長期間にわたり放射性降下物の汚染状況 評価に用いられてきた。福島第一原子力発電所事故(以下、「事故」という)により環境中に 放出された放射性セシウムは、風雨等によって長期的に生態系内を移動すると予想される。 放射性セシウムの土壌沈着量は、ウェザリング等の要因によって時間経過と共に比較的速く 減少していくのに対し、地衣類中の放射性セシウムは長期間保持されることが知られている。 従って、事故後の生態系における放射性セシウムの動態評価を行う上で、環境試料中の放射 性セシウムの挙動調査に加えて、地衣類における保持特性も明らかにすることが必要である が、日本産地衣類に関する知見は報告されていない。

本研究では、福島県内の地衣類を対象に放射性セシウムを長期間安定して保持するかについて明らかにすることを目的として、地衣類中の放射性セシウム濃度の経時変化を調べた。

調査は 2013 年 7 月から 2014 年 7 月にかけて行った。調査地点は、主に福島県内の事故の 影響を強く受けた地域を対象とした。地衣類の種類については、福島第一原子力発電所周辺 の低地に広く分布しているウメノキゴケ類(*Flavoparmelia caperata*, *Parmotrema clavuliferum* 等)でサクラの樹幹に生育する個体に着目した。同一個体における放射性セシウム濃度の経 時変化を調べるために GM 管式サーベイメータ(ALOKA 社製 TGS-146B)を用いた。測定 は、20mm 厚さの鉛コリメータを用いて時定数 10 秒で行った。

結果を図1に示す。図中の 点線は、各地衣類個体の初期 測定値からの物理学的半減期 による減衰を示す。今回の結 果では、すべての地衣類に存 在する放射性セシウムの量が 物理的減衰よりも増加する傾 向にあったことを確認できた。 このことから、地衣類が樹幹 流を通して樹冠もしくは幹に 存在する放射性セシウムの供 給を受けて、地衣体内に放射 性セシウムを収着・保持して いる可能性が考えられる。

Retention characteristics of radiocaesium in lichens and their applicability as fall-out indicator DOHI, T., OHMURA, Y., FUJIWARA, K., IIJIMA, K.

3A12 Distribution of radiocesium and its relationship with the other elements in tree body

(¹Graduate School of Bioagricultural Sciences, Nagoya University) OWANG, W. ¹, KANASASHI, T. ¹, SUGIURA, Y. ¹, TAKENAKA, C. ¹

Introduction

The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 resulted in the release of large amounts of radionuclides and contaminated large areas of forests in Fukushima Prefecture. To develop effective countermeasures to mitigate the impacts of radioactive contamination on forests and ensure the safe use of wood, understanding of the dynamics of ¹³⁷Cs in forest ecosystem is important. In present study, we investigated the distribution of radiocesium and its relationship with the other elements in different parts of tree body. The primary purposes are to clarify the uptake pathway of ¹³⁷Cs and to predict its behavior and accumulation within tree body.

Materials and methods

Two tree species were selected for the study: Sugi (*Cryptomeria japonica*) and Koshiabura (*Eleutherococcus sciadophyllodides*). Trees were collected from forests located about 30 km away from the Fukushima Dai-ichi Nuclear Power Plant. After felling the trees, stem disks from several vertical positions, branches and leaves were sampled. Disks were further separated into bark, sapwood and heartwood in laboratory. The ¹³⁷Cs concentration (Bq kg⁻¹) in different parts (bark, wood and foliage) was measured by gamma-ray spectrometry with a germanium semiconductor detector. Multi-elements (K, Rb, Mn and ¹³³Cs) concentration was determined by inductively coupled plasma mass spectrometer (ICP-MS).

Results and discussion

In the case of *E. sciadophyllodides*, the correlation between ¹³⁷Cs and the other elements varied among different tree components. ¹³⁷Cs showed positive correlation with all the alkali metals (K, Rb and ¹³³Cs) in all the parts. The correlation between ¹³⁷Cs and K, Rb in different tree parts was in the order of wood>leaves>bark, amongst, correlation between ¹³⁷Cs and K was extremely significant (r=0.919, p<0.01) in wood and significant (r=0.641, p<0.05) in leaves. The same tendency was also observed for ¹³³Cs which had the highest correlation with ¹³⁷Cs compared to other elements. Since *E. sciadophyllodides* is a hyperaccumulator for Mn, we also studied its relationship with ¹³⁷Cs, in contrast to alkali metals, high correlation was only found in leaves.

The high correlation between ¹³⁷Cs and ¹³³Cs indicates that radiocesium was well mixed with the stable Cs within the biological cycle in the forest ecosystems two and half years after accident. The chemical similarities between ¹³⁷Cs and K lead to the high correlation between them whereas the difference in wood and leaves may be attributable to their different physiological role.

3A13 野菜への放射性セシウムの移行について

(福島農総 t^{-1} 、学習院大理²)〇小林智 2^{-1} 、齋藤誠一⁻¹、原有⁻¹、松村康行⁻²、 大野剛⁻²

東京電力福島第一原子力発電所の事故に伴う放射性物質の放出により、農地の汚染が引き 起こされた。福島県の農作物に含まれる放射性物質のモニタリングは、事故直後から行われ、 結果が公表されており、2011年7月以降そのほとんどは不検出である。このような事例は、 多くの野菜類でも確認されている。これは、放射性物質に汚染された土壌で野菜類を栽培し たとしても、土壌から植物体への放射性 Cs の移行程度は極めて低く、移行係数は 0.0001~ 0.005 の範囲であることによる。また、野菜類においても他の農作物と同様に、土壌中の交 換性 K2O 含量が高まると、放射性 Cs の吸収が減少することが明らかとなった。

しかし、2011年3月時点で地上部に茎葉を展開していた多年生野菜の一部は、汚染の影響 が長期化している。多年生野菜である畑わさびは、直接沈着を受けた2012年採取の在圃株に 比べ、新植した茎葉および根の放射性 Cs 濃度が80%以上低下した。この結果から、植物体に 直接沈着した放射性 Cs は、植物体内へ取り込まれていることが推察され、土壌を介した間接 的な吸収に比べると、より深刻な汚染を引き起こすことを示すものであった。

野菜類における放射性 Cs の検出事例の一部には、原発事故直後の放射性物質の直接沈着や 土壌に起因しないものがある。その1つは、原発事故当時に使用あるいは屋外に置かれてい た園芸資材の再利用によるものであった。原発事故時に保温用資材として使用していた不織 布をコマツナに被覆し、その上部から灌水し栽培したところ、植物体の放射性 Cs 濃度は通常 の栽培に比べ極端に高い値となった。この不織布の切片からは、水で抽出される溶存態放射 性 Cs が検出された。溶存態放射性 Cs の濃度を変えコマツナへの葉面散布および株元潅水処 理したところ、葉面散布では植物体の放射性 Cs 濃度が溶存態放射性 Cs 濃度に比例して増加 し、一方の株元灌水では、処理濃度によらず低い放射性 Cs 濃度にとどまった。このことから、 葉面への溶存態放射性 Cs の接触は、植物体内への取り込みを引き起こす重大な汚染要因とな ることが明らかとなった。

その他の汚染要因としては、栽培環境に起因するものがあげられる。耐暑性の低い野菜類 の一部は、山間部で栽培されるものもある。そこで、汚染された腐葉土含量を変えてコマツ ナを栽培し、放射性 Cs の吸収の程度について調査した。植物体の放射性 Cs 濃度は、腐葉土 含量に応じて増加した。1M 酢酸アンモニウムにより各土壌から抽出した経根吸収する可能 性がある放射性 Cs 濃度は、腐葉土含量に応じて増加し、汚染腐葉土を含む腐植層が植物体の 汚染要因となる可能性が示された。

これらの野菜類への放射性 Cs の吸収経路の解明の研究は、現在も継続中であるものの、現地における放射性 Cs の吸収抑制対策として応用されている。今後も、原子力災害からの早期の復興を目指す避難地域や除染が困難な山林を抱える中山間地域で栽培される野菜類において、様々な環境条件に応じた対策を講じていく必要がある。

Transfer of radiocesium in vegetables. KOBAYASHI, T.,SAITO, S., HARA,Y.,MURAMATSU,Y.,OHNO, T.

3A14 草本植物の部位別における放射性 Cs および K の濃度分布の違いについて (放医研)〇田上恵子、内田滋夫

【緒言】セシウム(Cs)の植物中の挙動は、同族元素であるカリウム(K)と類似しているこ とが知られている。K は植物の必須元素であり、主に K⁺で存在するため植物中を動き易く再 利用されるが、例えばサクラの葉を過剰の NaCl に3日間漬けても2割程度が溶出しないこと から(Tagami et al., 2013)、一部は有機物と強く結合していると考えられる。Cs も K と同様 に主として Cs⁺であると考えられるが、化学的性質の違いから全く同じ動きとは考えにくい。 実際、Cs と K の濃度分布はイネの葉の位置毎で一致していないと報告されている (Tsukada et al., 2002)。本研究では、イネ科とは異なる草本植物に着目し、葉や茎等の放射性 Cs と K の 濃度分布を測定して、種間でのこれらの元素の分布の類似性の有無について検討を行った。 【材料および方法】放医研敷地内において採取した双子葉植物のフキ、イタドリ、セイタカア ワダチソウさらにシダ植物であるスギナの胞子茎であるツクシを用いた。フキは 2011 年秋 -2014 年春、ツクシ(は 2012-2014 年の春に、それぞれ複数回採取し、イタドリは 2013-2014 年に3回、セイタカアワダチソウは2014年に1回採取した。試料採取後フキは葉身(leaf blade) と葉柄(petiole)に、ツクシ、イタドリ、セイタカアワダチソウは葉と茎に分け、重量を測定 した。その後、表面に付着している土壌等を除去するために中性洗剤を用いて葉が痛まない ように洗浄し、水道水で5回洗浄した後、RO水でリンスした。比較のために洗浄していない 試料も作成した。これらの試料を 80℃にて恒量まで乾燥後、細断して良く混合し、U8 容器に 封入した。測定は Ge 半導体検出装置(Seiko EG&G)により 40,000-100,000 s で行った。

【結果および考察】フキの¹³⁷Cs と⁴⁰K の濃度結果について、2011 年 3 月 11 日からの時間変化 を Fig. 1 に示す。¹³⁷Cs 濃度は葉身および葉柄とも時間とともに減少しているが、常に葉身の

方が葉柄よりも¹³⁷Cs 濃度が高い。一方、⁴⁰K は 常に葉柄の方が高かった。すなわち、葉柄と葉 身の間には K と Cs の分配の違いが生じている ことを示している。フキの葉柄は葉身を高く持 ち上げることで日射を受け易くする役割を果 たしており、一般的な草本植物の茎と同様の機 能がある。イタドリとセイタカアワダチソウで は葉と茎を比較したが。¹³⁷Cs は葉の方が高く、 ⁴⁰K は茎の方が高かった。ツクシでは一般にハ カマと呼ばれる部分が葉であるが、同様の結果 が得られた。以上の結果から、部位によって K と Cs の濃度分布には違いがあるが、同様の機 能を持つ部位同士で比較すると、植物の種類が 違っていても、類似性があることがわかった。

本研究の一部は,資源エネルギー庁放射性廃 棄物共通技術調査等事業費の予算で行われた。

Fig. 1. Concentrations of ¹³⁷Cs and ⁴⁰K in leaf blade and petiole samples of giant butterbur.

(引用文献) Tagami, K., Uchida, S., J. Radioanal. Nucl. Chem. 295, 1627-1634 (2013).

Tsukada, H., Hasegawa, H., Hisamatsu, S., Yamasaki, S., Environ. Pollut. 117, 403-409 (2002).

Concentration Differences between Radiocesium and Potassium in Tissues of Herbaceous Plants TAGAMI, K., UCHIDA, S.

3A15 全効率を用いたサムコインシデンス効果の補正 -Ag110m のサムコインシデンス効果補正-

(金沢大学 LLRL)〇浜島靖典

【緒言】絶対測定で放射能を求める場合,検出効率が必須となる。カスケードガンマ線を放出 する核種は,その放射能の強弱によらず,どのような型の Ge 検出器でもサムコインシデンス 効果が必ず表れ検出効率の補正が必要となる。サム効果の補正には壊変形式とカスケードす るほかのガンマ線の全効率が必要となる。全効率はピーク効率を求めるよりはるかに困難な ため,通常は単色ガンマ線源を用いてピーク・トータル比で代用する。しかし,放射線管理 区域外の施設では,適当な単色ガンマ線源が入手困難なため,ピーク・トータル比を求める ことも困難となる。今回,管理区域外でも使用できる市販の密封線源などを用いて全効率を 推定し,サム効果の補正を試みた。特に,相対強度測定が困難な Ag110m のサム補正につい て報告する。

【実験】計数効率は、日本アイソトープ協会製の密封放射能標準ガンマ体積線源(Cd109, Co57, Ce139, Cr51, Sr85, Cs137, Mn54, Y88, Co60)の9核種混合線源)Na22線源, AMS用 Al-26線源を用いて求めた。

【結果と考察】単色もしくは単色ガンマ線放出とみなされる核種の計数効率は,9 核種混合 線源から求めたが,Ce139,Y88,Co60及びNa22線源はサム効果があり,井戸型Geでは各ピ ーク面積が40-60%も減少し,効率曲線作成に使用できない。(これら4 核種は,平板型,同 軸型Geでも10-20%程度は減少し,同様に効率曲線作成に使用できない。また,低エネルギ ー領域を検出できるGeの場合は,X線とのサム効果を考慮する必要がある場合もある。)

Co-60の場合,各添え字エネルギーについて, *E**を実測される見かけのピーク効率, *E*をサムの無いピーク効率, Tを全効率とすると

$$\epsilon *_{1.33} = \epsilon_{1.33}(1-T_{1.17})$$

 $\epsilon *_{1.17} = \epsilon_{1.17}(1-T_{1.33})$

と表せる。

ε*を Co60 で実測し, 1.33, 1.17MeV の ε を Ce139, Y88, Co60 などを使用せず単色ガンマ 線源だけを用いて求めることができれば 1.33, 1.17MeV の T を推定することができる。同様 に Y88 を用いて 0.898, 1.84MeV, Na22 を用いて 0.511, 1.27MeV の T を推定できる。このよ うに, サム補正に必要なエネルギー範囲でそれぞれの見かけのピーク効率から, 各ガンマ線 エネルギーの全効率の推定し T の近似曲線を作成する。T の近似曲線が決まれば全てのガン マ線のサム効果補正が可能となる。

全効率から推定した Cs134, Al26 の各ピークの見かけの効率と実測した見かけの効率はよ く一致していた。この T の近似曲線を用いて Ag110m 見かけの効率も推定した。Ag110m の 密封線源が入手できれば実測値との比較も報告する。

Correction of Sum coincidence effect using total efficiency - Sum Coincidence effect correction for Ag110m -HAMAJIMA, Y.

簡略化サムピーク法の開発 3A16

(名大院医¹、岐阜医療大²、名市大医³、愛知医大⁴)〇緒方良至¹、宮原 洋²、 石原正司³、石榑信人¹、山本誠一¹、小島貞男⁴

【緒言】sum-peak 法は、放射能の絶対測定法の一つで、1 壊変で2本以上の光子を放出する核 種に適用可能である。peak 計数率、sum-peak 計数率および全計数率から放射能を計算する。 しかし、測定対象に他の核種が混在している場合、全計数率の評価が困難であり、sum-peak 法の適用は難しい。そこで、peak 計数率と sum-peak 計数率のみで計算する方法を考案し、そ の適用可能性を理論的・実験的に検証した。

【理論】ある核種が2本の γ 線(γ_1, γ_2)をカスケードに放出する場合、 N_1 、 N_2 を各々の γ 線のpeak 計数率、 N_{12} を sum-peak の計数率、 N_{T} を全計数率、 $\overline{w}(0)$ を角相関とすると、放射能(N_{0})は、 次式で計算することができる(Brinkman et al¹)。

$$N_{0} = \left[\frac{N_{1}N_{2}}{N_{12}} + N_{T}\right]\overline{w}(0) = \frac{N_{1}N_{2}}{N_{12}}\overline{w}(0) + N_{T}\overline{w}(0) = R + T$$
(1)

この式で、T 項は、検出器と線源の距離の逆二乗にほぼ比例し、距離が離れると減少する。 一方、R 項は、距離を離しても減少しない。Noは原理的に一定である。したがって、距離が 増すに従って N_0 に占めるRの割合が増え、Tの割合が減る。距離 $\rightarrow \infty$ で $N_0 = R$ となる。そ こで、式(1)から N_Tを除き

$$N'_{0} = \frac{N_{1}N_{2}}{N_{12}}\,\overline{w}(0) \tag{2}$$

を導いた。距離が離れるに従い、 N'_0 は N_0 に近づく。(2)式では peak 計数率と sum-peak 計数 率のみで計算可能であるため他の核種が混在する試料への適用が可能である。(2)式を用いて 放射能を計算する方法を簡略化サムピーク(modified sum-peak)法と名付けた。

【実験】実験は、相対効率(RE) 40%と 25%の HP-Ge 検出器を用いて行った。²²Na、⁶⁰Co の標 準溶液から、①点線源、②体積線源を作製し、線源

- 検出器間距離を変えて計測した。

【結果と考察】Fig. 1 に RE 40%の検出器で²²Na と ⁶⁰Coの点線源を同時に測定した例を示す。横軸(下) は²²Naのpeak 計数率 N₁、横軸(上)は⁶⁰Coのpeak 計数率 N1(逆目盛)、縦軸(左)は²²Naの放射能、縦 軸(右)は⁶⁰Coの放射能である。試料-検出器間距離 が増すにしたがって N₁は減少する。数点のプロッ トから $N_1 = 0$ の位置での N'_0 を外挿した。外挿値は、 それぞれの核種の放射能と一致した。他の核種が混 在していても放射能を計算できることが分かる。体 積線源でも同様の結果を得た。簡略化サムピーク法 は、シンプルなγ線検出器1台で実行することが可 能であり、計算式も簡便で、きわめて実用的な方法であることが示された。

Fig. 1. Measurement of ²²Na and ⁶⁰Co at once.

¹⁾ Brinkman GA, et al., Int. J Appl. Radiat. Isot, 14: 153-157 (1963) etc.

Development of the modified sum-peak method

OGATA. Y., MIYAHARA, H., ISHIHARA, M., ISHIGURE, N., YAMAMOTO, S., KOJIMA, S.

3A17 ^{134Cs} 放射能の測定へのサムピーク法の適用

(名大院医¹、岐阜医療大²、名市大医³、愛知医大⁴)○緒方良至¹、宮原 洋²、 石原正司³、石榑信人¹、山本誠一¹、小島貞男⁴

【緒言】 134 Cs は 1 壊変で 10 本以上の γ 線を放出するため sum-peak 法の適用はかなり煩雑で ある。このため、 134 Cs の放射能測定への適用例はあまり報告されていない。本研究では、従来の sum-peak 法および我々が開発した modified sum-peak 法を用いて 134 Cs の放射能を評価す ることを試みた。

【方法】相対計数効率(RE) 40%と 25%の同軸型 HP-Ge 検出器および well 型 Ge 検出器を用いた。同軸型では試料と検出器の距離を変えて計測した。¹³⁴Cs 標準溶液から、①点線源、②体積線源(U8 容器)、③体積線源(RIA チューブ)を作製した。¹³⁷Cs との同時測定も試みた。 福島で採取した土壌を測定した。さらに、不均一分布線源を測定した。

【結果と考察】Fig. 1に RE40%の Ge 検出器での¹³⁴Cs 点線源の測定結果を示す。横軸は 605 keV の γ 線の ピーク計数率($N_{(605)}$)、縦軸は放射能で、 N_0 は sum-peak 法での計算結果、 N'_0 は modified sum-peak 法での計算結果、 A_0 は線源の放射能を示す。 $N_{(605)}$ は、線源-検出器間距離の逆二乗にほぼ比例して減 少する。図から明らかなように N_0 はどの位置でも A_0 と一致した。一方、 N'_0 は $N_{(605)} = 0$ の点に外挿す ると A_0 と一致した。¹³⁴Cs の放射能決定に sum-peak 法が適用可能であることが分かった。

¹³⁴Cs と ¹³⁷Cs の同時測定には modified sum-peak 法 を適用した。¹³⁴Cs の計算結果 ($N_{(605)} = 0$ での N'_0 の 外挿値) が線源の放射能と一致することが分かった。

Fig. 1. Change in N_0 and N'_0 versus $N_{(605)}$.

福島で採取した土壌を①modified sum-peak 法および②土壌標準線源との比較測定法で測定した結果、両者の算定結果は一致した。一方、コインシデンスサム効果の補正を行わない場合は 8%の過小評価であった。

well 型 Ge 検出器では RIA チューブ入りの体積線源を測定した。sum-peak 法を適用して計算した結果、線源の高さが well の深さを超えない場合、計算値は放射能と良く一致した。線源の高さが well の深さを超えた場合、過小評価となった。

¹³⁴Cs が不均一に分布している U8 容器状の線源においても N'_0 は A_0 に収斂することが分かった。これにより、modified sum-peak 法は、*in vivo* 検査や *in situ* 検査など、線源の均一性が不明である試料の測定にも適用可性があることが分かった。

modified sum-peak 法では、複数の核種が混在しても、標準線源に頼らずに試料の放射能を 測定できる。¹³⁴Cs の放射能が sum-peak 法で測定できることを実証した。

3B01 EPMA による U-Th-Pb 系 CHIME 年代測定の高精度化のための補正計算 モデルの評価

(名大年測)〇加藤丈典

U及びThは放射壊変によりPbとなる。CHIME年代測定はこの壊変系列を用いる化学年代 測定法で、電子プローブマイクロアナライザー(EPMA)を用いることにより1ミクロン程 度の微小領域の年代測定が可能である。正確なCHIME年代を得るためには、U、Th、及び Pbの濃度比を正確に測定することが必要である。すなわち、EPMA定量分析の不確かさが CHIME年代の不確かさに影響する。

EPMA 定量分析の不確かさは、X 線計数や標準物質の濃度の不確かさに加え、用いる補正 計算モデルの不確かさにも依存する。そこで、EPMA 定量分析で広く用いられている補正計 算モデルを評価した。その結果、Armstrong[1]による発生関数モデルと Love et al.[2]による原 子番号補正モデルを用いた場合は U、Th、Pb の濃度比が不正確になるのに対し、Pouchou & Pichori[3]の補正計算モデルを用いると正確な濃度比が得られることが明らかになった。これ は、Armstrong[1]のモデルが用いている surface-center Gaussian モデルの数学的制限と、Love et al.[2]の後方散乱補正モデルが U、Th 及び Pb に最適化されていないことが原因であると考え られる。

引用文献

[1] Armstrong, J.T. (1991) In: Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (eds), Plenum Press, New York, 261 – 315.

[2] Love, G., Cox, M.G. & Scott, V.D. (1978), J. Phys. D, 11, 7 – 21.

[3] Pouchou, J.L. & Pichoir, F. (1991) In: Electron Probe Quantitation, Heinrich, K.F.J. & Newbury,

D.E. (eds), Plenum Press, New York, 31 – 75.

Validation of matrix correction models in quantitative EPMA for accurate Chemical U-Th-total Pb Isochron Method (CHIME) dating KATO T.

古筆切の顕微鏡観察・書誌学的考察を用いた間接的¹⁴C年代測定法

一鑑真将来四分律等を例として一

3B02

(名大年代セ¹, 龍谷大古典籍セ², 多賀高³, 中央大文⁴)

小田寛貴¹,坂本昭二²,安裕明³,池田和臣⁴

【緒言】鑑真は 753 年に来日した唐の高僧であり,多くの経典・仏像・仏具・香料・薬をもたら した.特に重要なのは,僧侶の守るべき戒律や組織運営の規則を記した 60 巻の四分律である.現 在,正倉院には大きく二種類の四分律が収められている.一方は,天平十二年御願経四分律 31 巻 であり,光明皇后が書写させた五月一日経に含まれるものである.しかし,誤記等が多く訂正跡 が散見される.もう一方は,唐風の楷書体で書かれた四分律であり,訂正がほとんどなく,正し い本文をもつ.正倉院四分律の補訂再編に関する研究により,この唐経四分律が鑑真によっても たらされた四分律そのものである可能性の高いことが指摘されている¹¹.本研究の目的は,この 正倉院唐経四分律のツレ(元は同一のシリーズであった経巻の断簡)と思われる古筆切「四分律巻 第二十七断簡」(以下,対象切)について,年代測定・顕微鏡観察・書誌学的考察を行い,その書写 年代を明らかにし,古筆切を利用した間接的な¹⁴C年代の可能性を提示するところにある.

【実験・結果】対称切には、「五月一日経」という極札 (鑑定書) が付されている.しかし、書跡史 学的にも、また¹⁴C年代からも、極札の記述が不正確なことは知られている.そこで、まずは対象 切と、五月一日経・唐経四分律の法量・界高等を比較した.三者とも、法量・界幅に有意な差異は ないが、五月一日経の界高は他に比べてやや低く、また、字の大きさ・間隔は対象切と五月一日 経とで異なっている.次に、対象切についてデジタル顕微鏡 (KEYENCE 社製、VHX-1000) による観察 を行い、唐経四分律巻十八について得られている結果⁹との比較を行った. 簀目・紙厚は両者で 一致しており、方形の透明な結晶 (Cubic Crystal) の混入・打紙加工の跡がともに確認された.そ の上で、対象切の¹⁴C年代測定を行った.対象切に裏打紙の無いことを確認した後、超音波洗浄、 HC1・NaOH 処理、グラファイト合成を行い、(株)パレオ・ラボ Compact AMS によって、1323±21BP と いう¹⁴C年代を得た.これは、7世紀半ば~8世紀半ばの鑑真来日以前に相当する結果である.

【考察】書誌学的計測と顕微鏡観察の結果から,対象切は,五月一日経とするよりも,鑑真将来 経とされる唐経四分律のツレと判断できる.古紙も材料とする透き返しの紙である可能性がある が,不純物に相違がみられる一方で,ともに Cubic Crystal と小さな粒子の存在が確認できるこ とから,新しい楮繊維を主体として補助的に古紙を用い,同じ填料や染色繊維を使用したものと 考えられる.それ故,料紙の¹⁴C年代は書写年代に近いと考えられる.当時の日本には 60 巻を完 備した四分律がなかったため,対象切およびそのツレと判断できる正倉院の唐経四分律 16 巻は, 7世紀半ば~8世紀半ばに唐で書写されたものであることになり,これらを鑑真将来四分律その ものとする説を自然科学の面からも支持する結論を得た.¹⁴C年代測定法は破壊分析であり,正倉 院蔵唐経四分律に直接適用することは困難である.しかし,そのツレと判断できる古筆切があれ ば,書誌学的情報・顕微鏡観察・¹⁴C年代測定を併用することで間接的に年代を得ることが可能と なる.本研究は,この間接的¹⁴C年代測定法を示す初例となった.

【参考文献】1) 杉本一樹 (2007) 正倉院紀要第 29 号, (157) - (218).

2) 正倉院紀要 (2010) 正倉院紀要第 32 号, (9) - (71).

The indirect radiocarbon dating using microscope observation and bibliographical consideration of kohitsugire

ODA, H., SAKAMOTO, S., YASU, H., IKEDA, K.

3B03 土器付着炭化物炭素年代測定法 -内面と外面に付着する炭化物の化学組成と起源-

(金大 LLRL¹、北大埋文調査室²、国際基督教大学³、歴博⁴、東大博物館⁵)〇宮 田佳樹¹、遠部慎²、堀内晶子³、坂本稔⁴、松崎浩之⁵、今村峯雄⁴

土器の内外面に付着した炭化物を炭素年代測定することによって、土器を使用した時代を 推定することができる。縄文時代早期の同一個体土器の複数箇所に付着した炭化物(内面に 付着したコゲ(食物起源)と外面に付着したスス(燃料材起源))の炭素年代測定結果には、 90炭素年の年代差があった。本研究では炭素年代のリザーバー効果や内外面炭化物の脂質組 成を含む化学組成の観点から、土器付着炭化物の炭素年代測定値の示す意味について考えて みる。

琵琶湖沿岸の入江内湖遺跡から出土した同 一個体8破片の土器付着炭化物の内,外面付着 物を炭素年代測定したところ,内面付着物の年 代(5053±12 BP; N=5)が外面付着物の年代(4961 ±22 BP; N=7)よりも,系統的に91±25¹⁴Cyrs 古い値を示した。内面付着物の炭素同位体組成 を測定したところ,海洋リザーバー効果の可能 性がほとんど考えられないため,その炭素年代 差が生じる原因の一つとして,琵琶湖産魚介類 を煮炊きした際に生じる淡水リザーバー効果の 可能性を指摘した(宮田他, 2011)

土器外面のススである SGMB-4232b の化学組 成は,それ以外の外面付着炭化物の化学組成と 似ているが,しかし,AAA 処理後のこの付着炭 化物の炭素年代測定値は,内面土器付着物の炭

図 琵琶湖沿岸の入江内湖遺跡から出土した複数破片 からなるの同一個体土器(北白河下層 II c 式)から 採取した内・外面付着炭化物の炭素年代測定結果

素年代測定値に似ていた。また, AAA 処理前は, SGMB-4232b の化学組成は, 内面のそれに似ていた。この付着炭化物は食材の一部が土器外面に付着して焦げた可能性を示している。つまり, 土器外面に残る"吹きこぼれ"という調理現象が, この SGMB-4232b の化学組成によって, 説明できるかもしれない。

*AAA 処理 まず, 土器付着炭化物を塩酸で洗浄し, 炭酸塩を除去する。次に, 水酸化ナトリウム水溶液で処理し, フミン酸などの土壌起源有機物を除去, 最後に, 再度塩酸で処理し, 水酸化ナトリウムを中和する土器付着炭化 物の伝統的な洗浄法。

Radiocarbon dating of carbonized material attached to pottery: implications of chemical component of inner and outer surfaces on potsherds. MIYATA, Y., ONBE, S., HORIUCHI, A., SAKAMOTO, M., MATSUZAKI, H., IMAMURA, M.

INAA と ICP-AES を用いた地球化学的試料中のバナジウムの定量 3B04

(首都大学東京)〇髙橋大輝、白井直樹、海老原充

【緒言】

バナジウムは地殻やマントルにほぼ均一的に分布しており、地球化学的には親石性元素に分類されている。最近では地球化学的試料中のVの同位体比や含有量を用いて地球の進化過程 に関しての知見も得られている (Nielsen et al, 2014)。これまでのVの定量はICP-AES, ICP-MS, NAA, AAS, XRF など、様々な方法で分析されてきた。しかし、ICP-AES に関しては異なる分 析波長を用いられているため、分析値の信頼性が低いという問題点が残されている。そこで、 本研究では地球化学的標準試料を用いて、INAA で正確な分析値を求めるとともに、Vの定量 に適した ICP-AES の分析波長を決定することを試みた。

【実験】

[INAA] 約50mgの岩石粉末試料(JB-1, JB-2, JB-3)を1cm×1cmの高純度ポリエチレン袋に封入 した。それを京都大学原子炉実験所の pn-3 (熱中性子束; 4.6×10¹²/cm²/s,速中性子束; 9.6× 10¹¹/cm²/s) で10秒間、中性子照射を行った。原子吸光用V試薬(1000 µ g/g)から100 µ g 分取 し、濾紙に滴下したものを比較標準試料とした。

[ICP-AES] 岩石粉末試料 20-30mg をテフロン製分解容器に取り、HF-HNO₃-HClO₄を用いて酸分解を行い、最終的に分解溶液を硝酸系に調整した。調整した溶液から一部分取し、希釈し、誘導結合プラズマ発光分析装置でVの定量を行った。ICP-AESの感度変化はLuで補正した。 【結果・考察】

JB-1, JB-2, JB-3 の INAA による定量値は 6%以内で推奨値と一致した。ICP-AES での V の定量には 292.402nm, 310.230nm と 311.071nm の 3 つの分析波長を用いた結果を比較した。 292.402nm と 311.071nm には Ti の分光干渉が、310.230nm には Ar 寄与の分光干渉があることが分かった。分光干渉補正後の 3 つの分析波長から得られた定量値は、10%以内で推奨値と

一致した(図1)。311.071nmでのTiの分 光干渉の程度は292.402nmに比べ10倍 程大きく、また310.230nmの分析波長周 辺のバックグラウンドはArピークの影 響を受け、高くなっていた。検証した3 つの分析波長での検出限界は、それぞれ 0.75ppm(292.402nm), 3.5ppm(310.230nm), 0.96ppm(311.071nm)であった。検出限界 と分光干渉の寄与率を考慮して、 292.402nmがVの定量に適した波長であ ることが分かった。さらにICP-AESの検 出限界はINAAの検出限界(25ppm)と比 べて、約7~30倍低いことが分かった。

図 1. 各分析値(ICP-AES, INAA)と推奨値との比較

Determination of V in geological reference samples by INAA and ICP-AES TAKAHASHI, H., SHIRAI, N., EBIHARA, M.

3B05 Multielement analysis of NIST and IAEA reference materials (NIST-1646a, NIST-1400, IAEA-450 and IAEA-395) by INAA, ICP-AES and ICP-MS

(首都大院理工¹、フィリピン原子力研究所²、ベトナム原子力研究所³)○カオ・ ドン・ブ¹、スギャン・レイモンド²、タン・ワン・ティエン³、ホ・バン・ヤ ン³、白井直樹¹、海老原充¹

[Introduction] Certified reference materials (CRMs) are greatly important in chemical analysis. They can be used as reference standard or quality control samples. A survey of literatures reveals that the number of published values for NIST-1400 (Bone Ash), IAEA-450 (Algae) and IAEA-395 (Urban Dust) is very limited. Certified values are available for eight elements, seven elements for NIST-1400 and IAEA-450, respectively, but no certified value are given for IAEA-395 at present. In this study, three analytical methods (INAA, ICP-AES and ICP-MS) were used for the determination of a wide range of major, minor and trace elements of three CRMs (NIST-1400, IAEA-450 and IAEA-395). Besides these three CRMs, NIST-1646a (Estuarine Sediment) was analyzed as a quality control sample to estimate the accuracy and precision of our analytical data.

[Experimental] *INAA* - INAA was done at the Nuclear Research Reactor in Dalat, Vietnam. NIST-1400 and IAEA-395, and IAEA-450 weighing 30-50 mg were irradiated for 45 seconds and 5 minutes, respectively. For long irradiation, 100 mg of each sample was used for 10 hours irradiation.

ICP-AES and ICP-MS - Around 30-500 mg of each sample was acid-digested. The solution was used for the determination of rare earth elements (REE), Th and U abundances by ICP-MS, and for major elements by ICP-AES.

[Results and Discussion] *NIST-1646a* - Alminium, Ca, Fe, Mg, Mn and Ti values were determined by both INAA and ICP-AES. Our data obtained by these two methods are in excellent agreement with each other and also with certified values except for Mg. The data for Mg abundances determined by INAA had interference from ²⁷Al(n,p)²⁷Mg reaction. Its contribution (up to 70%) was corrected, but the data quality was not satisfactory. The elemental abundances of some REE (La, Ce, Sm, Eu and Dy) and Th abundances determined by both INAA and ICP-MS are consistent with each other, and information and literature values.

NIST-1400, IAEA-395 and IAEA-450 – Twenty seven, 28 and 39 elements were determined for NIST-1400, IAEA-450 and IAEA-395, respectively, by INAA, ICP-AES and ICP-MS. Figure 1 shows CI chondrite-normalized REE abundance patterns for NIST-1400 and IAEA-395. Our data for these samples are in good agreement with literature values. Although absolute REE abundances are different, CI-normalized REE abundances patterns are similar to each other and even to those of continental crustal materials.

Figure 1. CI-normalized REE abundances for NIST-1400 and IAEA-395

Multielemental analysis of NIST and IAEA reference materials (NIST-1646a, NIST-1400, IAEA-450 and IAEA-395) by INAA, ICP-AES and ICP-MS VU, C. D., RAYMOND, S., THIEN, T. Q., DOANH, H. V., SHIRAI, N. EBIHARA, M.

家庭用アルミ箔の中性子放射化分析—比較法とk₀-IAEA 法の比較— 3B06

(首都大院理工)〇三浦義隆、大浦泰嗣

【はじめに】通常、中性子放射化分析では比較法により元素の定量が行われ、定量したい全元素について比較標準試料を準備する必要がある。一方、k₀法は1元素のコンパレータを同時に照射することで、γ線が検出された全元素の定量が可能であるが、照射場特性などのパラメータをあらかじめ正確に求める必要がある。

ところで、日常的によく使用される家庭用アルミ箔は年間数千万トン出荷され、近年安価 な輸入品も多く販売されており、その不純物濃度が商品間でどの程度差があるか興味が持た れる。そこで本研究では、12 種類の家庭用アルミ箔中の不純物を k₀法による中性子放射化分析 法で定量を行ない、比較法による定量値と比較した。

【実験】表面をアルコールで拭いた家庭用アルミ箔と高純度アルミ箔 50-100mg、k₀ 法用標準物質 SMELS 20-50mg、ならびに照射場特性を知るための Au-Lu-Zr モニタを高純度ポリエチレン袋に熔封し、京都大学原子炉 KUR の Pn-3 で 10 秒、Pn-2 で 1-2 時間照射した。照射後、適当な冷却時間をおいて Ge 半導体検出器で測定した。比較法は JB-1a、JA-2 または Ga 試薬を比較標準試料として、k₀法は IAEA の推奨する手順に従い、IAEA 製ソフトウェア"k₀-IAEA"を利用して定量した。時期を変え、ほぼ同じ試料を用いた一連の実験を 2 度行った。

【結果・考察】短時間照射の結果のみここでは述べる。 k_0 法での定量値の確かさを岩石標準試料(JA-2、JB-1a)と SMELS-type1 を用いて確認した。図に岩石標準試料と SMELS-type1 の k_0 法での定量値と文献値の比を示した。岩石標準試料では Mn と Ca を除く 3 元素で文献値とほぼ 10%以内で一致し、SMELS-type1 についても V を除いた 6 元素で参照値とほぼ 10%以内 で一致した。SMELS-type1 の V のみ大きく異なった理由は今のところ不明である。

アルミ箔試料では、短時間照射で不純物として V と Mn の定量を行うことができた。 k_0 法 による定量値は比較法による定量値と系統的に V でおよそ 7%、Mn でおよそ 14%低かった。 アルミ箔試料の V と Mn の濃度は、それぞれ、およそ 25~300ppm とおよそ 14~220ppm であ り、商品によって 10 倍以上差があることが分かった。また、V と Mn 濃度には明らかな相関 関係は見られなかったが、V/Mn 比でアルミ箔を 3 グループに分けることができた。

Neutron activation analysis of household aluminum foils - Comparison between comparative method and k_0 -IAEA method - MIURA, Y., OURA, Y.

3B07 漢方薬および薬草の放射化分析

(お茶大¹、東北大²、京大炉³)〇古田悦子¹、佐藤修彰²、奥村良³、飯沼勇人³

【はじめに】2013年 APSORC13(金沢)において、119 試料の漢方薬と薬草の放射化分析の結果を 発表した。この際に用いた試料に関して、以下の内容を明らかにした。① 漢方薬の「牛黄解毒片」 と「六神丸」の2種類は、As 濃度が%オーダーと高く、さらに「六神丸」は Hg も同濃度含まれ ていた。② ベトナムで購入した薬草の多くに極低濃度ではあるが Hg が含まれていた。③ 日本 製の漢方薬には中・長半減期となる金属元素はふくまれていなかった。2014年度は、① に関し ては人体への影響として化学形が重要であるため、X 線回析を行った。さらに試料数を増やし、 ①に挙げた2漢方薬は常に As, Hg を同程度を含むのか、②、③は一般論と言えるのかを検討した。 【実験】新たに加えた試料は、中国製「牛黄解毒片」2種類、「六神丸」は、中国製 1種類、 日本製2種類であり、漢方薬が18種、薬草が9種類であり、ベトナムの薬草は再測定した。 放射化分析用試料は、通常の粉末均一化、秤量、高純度ポリエチレンへの2重封入を行った。 照射は KUR において行い、1MW、0.5~2.5時間の照射とし、1週間後に開封測定し、再測 定を1か月後に行った。「牛黄解毒片」と「六神丸」各3種類の試料は、X 線回析を行った。 X 線回析は、リガク製 Ultima-IVを用い、得られた解析パターンを JCDD のデータと比較して、 化合物相を決定した。

【結果及び考察】試料の繰り返し測定により 279 keV の γ 線は ²⁰³Hg によるものと確認した。 「牛黄解毒片」と「六神丸」に関する放射化分析結果の一部を表1(SD は省略)に示す。同 一名称の薬であっても、主成分の添加量は異なっていた。Ca, As, Hg に関しては%オーダーで 添加されており、X 線回析が十分可能であった。X 線回析の結果から、これらの試料中の As を含む結晶相は Realgar (鶏冠石 As₄S₄;単斜晶)であり、Hg については Cinnabar (辰砂 HgS; 正方晶, As₄S₄;単斜晶)、Ca については Calcite (方解石 CaCO₃;三方晶)であった。即ち As お よび Hg は硫化物であり、人体への吸収はなくショックを与える物質であり、体内はスルー すると考えられる構造であることが分かった。また、Sb は鶏冠石や辰砂と共存する輝安鉱に多 く含まれており、As, Hg がこれら鉱石を添加している証拠になると考えられたが、日本の「六 神丸」については当てはまらなかった。これらの高濃度の重金属を含む漢方薬は、インター

ネットを通してどこから でも購入が可能である。 さらに、中国国内に農場を 持つ日本メーカーの漢方 薬には(中・長半減期の) 重金属元素は検出されな かったが、日本国内で栽培 されたと考えられる原材 料を使用した日本の漢方 薬、薬草類には種々の元素 が含まれていた。試料別の 結果を報告する。 表 1

2種類の漢方薬の放射化分析結果

	漢方薬試	料		核種濃度 (ppm)				
No	名称	生産国	Ca-47	As-76	Sb-124	Hg-203		
1	上共	中国	34,400	83,000	250	16.0		
2	一十	十页 中国 10		220,000	21.1	1.19		
3	· 丹牛+毋-/ [中国	18,000	85,800	204	7.36		
4		中国	199,000	74,000	330	74,000		
5	去抽力	中国	71,000	64,600	305	79,300		
6	ノハイ中ノ山	日本	23,400	553	0.419	1.25		
7		日本	149,000	12,400	6.01	30.8		

INAA of Chinese medicine and herbs

FURUTA, E., SATO, N., OKUMURA, R., IINUMA, Y.

加速器施設で生成されるエアロゾル粒径分布測定に影響する要因について 3B08

(藤田保衛大¹、京大炉²)○横山須美¹、沖 雄一²、関本 俊²

【緒言】大型加速器施設での作業者の内部被ばく線量評価を行う上で、加速器室内空気中に生成した粒子状放射性核種の粒径分布は重要な因子の一つである。このため、電子線型加速器 ターゲット室内でビーム照射中に生成される放射性粒子の個数濃度分布及び放射能濃度分布 を測定し、照射時間やビーム電流値の違いが、ターゲット室内粒子の粒径分布にどのような 影響を与えるのか、また、個数濃度分布から放射能分布を算出する場合、影響を与える要因 を明らかにした。

【実験】実験は京都大学原子炉実験所電子線型加速器(LINAC,中性子東:3×10¹¹ n/cm²/s(ビ ーム出力 6kW 時))にて実施した。ビームエネルギーは 30MeV とし、ビーム電流を 20µA~ 100µA とした。LINAC ターゲット室内(約 150 m³)のビームライン上には Ta ターゲットを 設置して中性子を発生させた。ターゲット後方にステンレス製のフレキシブルチューブ(長 さ 6 mm、直径 25 mm)の片端を設置した。このチューブのもう一方には、隣接する測定室に 設置した走査型モビリティ粒径測定器(SMPS; Scanning Mobility Particle Sizer, TSI 社製 Model 3936)を接続し、ターゲット室内で生成された粒子の個数濃度を測定した。また、ロープレッシ ャーカスケードインパクタ(東京ダイレック社製、LP-20RS, 13 段)も合わせて接続し、ビー ム発生開始から1時間後にポンプにより 20L/min で吸引し、生成粒子を分級捕集した。なお、 カスケードインパクタの各段にはステンレス捕集板を装着し、捕集板にはグリスを塗布し、 粒子の跳ね返りを防止した。さらに、フレキシブルチューブの測定室側にテフロンフィルタ

(アドバンテック社製 47mm φ、ポアサイズ 0.8 µm)を装着し、流量率 36 l/min で 15 分間吸 引し、粒子を捕集した。カスケードインパクタで捕集した粒子の放射能を GM 計数管で、フ ィルタに捕集した粒子の放射能を BGO 検出器により測定し、減衰補正を行い放射性粒子の放 射能分布を算定した。

【結果】 フィルタに捕集した粒子の放射能を測定した結果、生成放射性粒子の実効半減期は、 10.5 ± 0.2 分となった。このことから、放射性粒子の主な放射性核種は空気中の窒素(^{14}N)の 放射化物である ^{13}N (T_{1/2}=9.97分)であったといえる。

ビーム発生開始 60~90 分に SMPS で測定した生成粒子の個数濃度分布を Fig. 1 に示す。個 数濃度は、ビーム電流(ビームフラックス)が高くなるにつれ高くなる傾向を示したが、分

布は同様であった(80μAの場合、155 nm)。 カスケードインパクタにより捕集した粒子 の放射能分布についても同様な傾向を示し た。一方、ビーム電流 80μAにおいて、SMPS の個数濃度分布から算出した放射能分布と カスケードインパクタの結果を比較したと ころ、カスケードインパクタによる中央径は、 SMPS より推定した値の約 1.3 倍となった。 これは、インパクタ上段(大粒径側)へ微小 粒子またはガスが付着したことによると考 えられる。

A Factor Affecting Activity Distribution of Radioactive Aerosols Formed in Accelerator Target Room YOKOYAMA, S., OKI, Y., SEKIMOTO, S.

3B09 井戸水中 ⁹⁰Sr 濃度に影響を及ぼす環境因子に しいて

(日本原燃㈱¹、TPT²)〇幸進¹、岡光昭¹、佐々木耕一 2 1、岡村泰治1

深貝淳

中⁹⁰Srの挙動について調査した結果を報告する。 グ項目のうち、井戸水(地点数:2地点、頻度:4回/年、測定項目:γ 核種, 【緒言】 1989 年から実施している、六ヶ所原子燃料サイクル施設周辺の環境モニ ³Н, $({}^{1}\mathrm{S}_{06})$ タリン

が徐 1地点(尾駮2:浅井戸)において、2003年頃に約3mBq/Lであった井戸水中⁹⁰Sr濃 ない ┢ 「 早 し、 宦

確認されたが、濃度 更に調査を進めた。 2011 年に 変動の原因について るものではないことが を考慮して、この濃度 施設の運転履歴等 に達した。 上昇は施設影響によ (⁹⁰Sr/安定 Sr)および 比放射能 28mBq/L

(mBq/mg-Sr)

⁹⁰Sr 濃度

図 1 井戸水 (尾駮2)の ⁹⁰Sr 濃度と ⁹⁰Sr 比放射能の推移

⁹⁰Sr 濃度と EC および安定 Sr 濃度がよく相関することを確認したので、更に考察を進め び過去の工事状況の調査、3)測定器の常設による EC の常時測定を実施した。 るために 電率(EC)、pH、安定 Sr濃度についてのデータを測定しており、これまでの測定結果から、 【調査内容】環境モニタリングでは、 1)イオンクロマトグラフィーによる主要イオン組成の測定、2)周辺の構造物およ 報告項目のほかに試料採取時の井戸の水位、導

成分が合成されていることが示唆された。2)地下水の流れ込んでくる上流にあたる場所 動することが明らかになった。このことから、この井戸水の水質は起源の異なるいくつかの 【結果と考察】1)主要イオン組成の測定で、Na⁺、Cl⁻濃度が他のイオン種よりも大きく変

の水質は、大雨や融雪等の一時的なイ の関係は明確ではなかったが、浅井戸 咳された。3)EC は1年周期で緩やかに 場合があった。ECの短期変動と降水量 変動しながら、短期間で大きく変動する 水の水質が季節変動する可能性が示 沈砂池、地下配管等があることを確認 ベントの影響を受けると考えられる。 した。排雪作業や降雨等の影響で井戸 冬季に排雪場所として使われる谷、

KOU, S., OKA, M., SASAKI, K., OKAMURA, Y., FUKAGAI, J. Environmental factors on ⁹⁰Sr concentration in shallow well water 因子の影響を考慮に入れて、結果を評価する必要がある。

3B10 東海再処理施設周辺の畑土中¹²⁹I濃度測定へのICP-MS法の適用

(原子力機構)〇永岡美佳、横山裕也、藤田博喜

【はじめに】ヨウ素-129(¹²⁹I、半減期 1570 万年)は、自然界では大気中のキセノン(Xe)と 宇宙線との反応やウラン-238の自発核分裂により生成される。その一方で、大気圏内核実験 や原子力発電所の事故、核燃料再処理施設の稼働に伴い、¹²⁹I は環境中へ放出される。原子力 機構では、東海再処理施設周辺における¹²⁹Iの蓄積状況を把握するために、畑土中の¹²⁹I 濃度 測定を 1982 年より定期的に実施している。従来、この¹²⁹I 濃度の測定には、中性子放射化分 析法と加速器質量分析法(AMS)を適用してきた。しかし、これらの測定方法は、¹²⁹I の検出 感度に優れているが、その測定は時間的な制約や施設の運転状況等に依存し、測定結果をす ぐに得ることができない。このため、トリプル四重極誘導結合プラズマ質量分析装置 (ICP-QQQ)を用いた畑土中¹²⁹I 測定法の検討を行った。本研究では、まず、ICP-QQQ の最 適な測定条件の検討を行い、その条件下で東海再処理施設周辺土壌中¹²⁹I を測定した。その 結果を AMS による結果と比較し、土壌中¹²⁹I 測定への ICP-QQQ の適用可能性について検討 した。

【実験】東海再処理施設から南西約1km、2km及び3kmの 距離に位置する畑土試料を用いて¹²⁹I濃度の定量を行った。 試料は、既に AMS[1]で測定結果が得られている 2011 年及 び 2012 年に採取した畑土を用いた。試料はまず、約 60℃ で5日間程乾燥し、2mm以下に篩い分けした。その試料100 gを石英燃焼管に詰め、200℃~1000℃まで燃焼温度をあげ、 揮発したヨウ素を 0.5 g の活性炭に捕集した。その後、水 酸化ナトリウムで浸出後、溶媒抽出で精製したのち、PdI2 沈澱を作成した。その沈澱を600℃まで加熱し、揮発させ たヨウ素を 0.5%TMAH に溶解させたものを測定試料とし た (Fig.1)。 測定試料は、 Agilent Technologies 社製の ICP-QQQ で測定した。なお、ICP-QQQ においては、プラ ズマガス中に含まれる¹²⁹Xeの影響を最小限化するための リアクションガスとしての酸素ガス流量を検討し、測定条 件の最適化を行った。AMS 測定は、原子力機構青森研究 開発センターに設置されている High Voltage Engineering Europa 製のタンデム型加速器を用いた。安定ヨウ素は、炭 酸塩焙焼法で精製後、ICP-QQQ で測定を行った。

Soil sample (100 g) \downarrow Combustion at 1000 °C in quartz tube \downarrow Trap in charcoal (0.5 g) \downarrow Leach in NaOH solution \downarrow Solvent extraction \downarrow Back-solvent extraction \downarrow PdI₂ precipitation \downarrow Dissolved in 0.5% TMAH solution \downarrow Measurement by ICP-QQQ

Fig.1 Procedure for the determination of Iodine-129 by ICP-QQQ.

【結果と考察】ICP-QQQの酸素ガス流量を検討した結果、0.7 mL/min intimestimations in 129Xe や intimestimations in 129AF マイオンによる影響を最小限に抑える上で、最適なことが分かった。この測定条件で、 intimestimation in 129AF の検出限界値は、0.1 mBq/kg であった。次に、試料の測定を行った結果、ICP-QQQ により得られた intimestimations in 129AF で得られた結果と一致した。なお、本分析工程における回収率は、約 80%であった。本研究により、ICP-QQQ を用いて、東海再処理施設周辺の畑土中 intimestimation in 129AF でまることが分かった。

[1] Y. Kokubun et al., RADIOISOTOPES, 60, 109-116 (2011)

Application of ICP-MS to determination of ¹²⁹I in field soil around Tokai Reprocessing Plant NAGAOKA, M., YOKOYAMA, H., FUJITA, H.

Pu を含む極微量多元素逐次分離法 3B11

(原子力機構・分析化学研究グループ)〇宮本ユタカ、安田健一郎、間柄正明

【緒言】原子力施設の事故や核爆弾などによって環境中に放出された放射性核種を含む環境 物質が長期的にどのように変動していくのかを予測する上で、これまでの変動履歴の測定結 果が非常に役立つ。植物にもプルトニウムやウランなどは極微量であるが取り込まれる。プ ルトニウムの同位体比(²⁴⁰Pu^{/239}Pu など)を測定することで原爆や核実験など放出起源の推定が 可能となる。しかし、植物に含まれる Pu 濃度は最大で数 10 ピコグラム(10⁻¹¹ g) / kg 程度と極 微量であること、分析に供することができる試料量に制限があることから、ピコグラム以下 の極微量元素を分析するための化学分離技術が必要である。発表者らは、これまでに一本の 陰イオン交換カラムでナノグラム(10⁻⁹ g)以下のウラン、トリウム、鉛、希土類元素を逐次的 に自動で分離する技術を開発してきた(1)。この逐次分離法を発展させてプルトニウムの逐次 分離も可能になれば植物試料の極微量分析が可能であると考え、プルトニウムを含む極微量 多元素逐次分離法を開発するため、Pu スパイクを用いた分離実験を行った。

【実験】²⁴²Pu スパイク 11 pg と ICP-MS 校正溶液の Th 200 pg を分離試料とし、酢酸(AcOH)を 主成分とする混酸からなる試料溶液 1 mL に調製した。この溶液を陰イオン交換樹脂 (MCI-GEL CA08P, 粒径 75~150 µm, Cl⁻形)を詰めたカラム(内径 4 mm, 長さ 70 mm, カラム容 量 0.84 mL)に流して、カラム上に吸着させた後、

AcOH、HCl および HF の混酸を流して Th と Pu の溶出挙動が AcOH と HCl の濃度によってどの ように変化するかを調べた。4 mL 毎に集めた溶 出液を蒸発乾固させた後、2% HNO₃測定溶液に 調製した。高分解能 ICP-MS (ELEMENT-1)を用い てイオン強度(cps)を測定し、Pu と Th の溶出率 (%)を比較標準溶液と試料の強度の比較から求 めた。

【結果】Fig.1 に混合溶媒組成による Th と Pu の 溶離挙動の違いを示す。これまでに開発した逐 次分離法では、Th を 70% AcOH + 1M HCl + 0.1M HF の混合溶媒で溶離していたが、Pu も Th と同時に溶出することが分かった。さらに AcOH 濃度を60%に下げると Pu は溶出しやすくなった。 一方、HCl 濃度の上昇は Pu 溶出の抑制に効果的 であった。以上の結果から、Th の分離には 10 カラム容量の 70%AcOH + 2M HCl + 0.1M HF の 混合溶媒を用い、次いで異なる組成の溶離液で Pu を分離することで、目的の Pu を含む多元素逐 次分離法の開発に成功した。

Fig.1 Elution profiles of Th and Pu.

本発表には科研費基盤研究(C)(25340078)からの助成を受けて得られた成果の一部が含まれる。 参考文献: (1) Y. Miyamoto *et al., J. Nucl. Radiochem. Sci.*, <u>10</u>[2], 7 (2009).

Sequential separation of ultra-trace multi-elements including Pu MIYAMOTO, Y., YASUDA, K., MAGARA, M.

3B12 TIMS フィラメント上で溶解したプルトニウム粒子のα線測定

(JAEA)〇安田健一郎、鈴木大輔、金澤和仁、宮本ユタカ、江坂文孝、間柄正 明

【はじめに】JAEA では、原子力施設等における未申告活動を検知する手段の一つとして保障 措置環境試料分析手法の開発を実施している。その一環として、施設等からの拭き取り試料 (スワイプ)に付着した核物質を含む粒子を SEM-EDX により検出し、TIMS により同位体組成 を分析する手法を確立した¹⁾。粒子に含まれるプルトニウムが極微量な場合、SEM-EDX では 検出が困難であったため、TIMS による同位体比分析に先立ち、回収した粒子中のプルトニウ ムの有無を確認するため α 線測定の適用を検討している。また、この α 線測定により正確な (²³⁸Pu+²⁴¹Am)/(²³⁹Pu+²⁴⁰Pu)放射能比が得られれば、続く TIMS によるプルトニウムの質量分析 結果と組み合わせ、プルトニウム精製時期の推定も可能となる。これまでにプルトニウム標 準試料(SRM947)から作製した粒子を測定したところ、粒径が 1 µm を超えると自己吸収の影 響により、正確な(²³⁸Pu+²⁴¹Am)/(²³⁹Pu+²⁴⁰Pu)放射能比測定が困難であった。そこで、TIMS 用 Re フィラメント上にプルトニウム粒子を乗せた状態で酸溶解する方法を検討した。本発表で は、プルトニウム粒子の溶解前後の SEM 画像と α スペクトルを例示し、効果的な条件につい て検討したので報告する。

【実験】 プルトニウム粒子は、同位体標準物質(SRM947)溶液を蒸発乾固後、削り取って作製 した。SEM により粒径を計測し、粒径 1.0~1.5 μ m の 5 粒子を SEM 下でピックアップ、それ ぞれの粒子をTIMS 用 Reフィラメント上に乗せた。このフィラメントを α 線測定装置(ORTEC 製 OCTETE-Plus, BU-024-600-AS) で測定した後、フィラメント上で粒子を溶解・乾燥し、再 度 α 線測定した。なお、試料-検出器間距離は 5 mm、測定時間は 10 万秒以上である。

【結果と考察】図1にフィラメント上にピックアップしたプルトニウム粒子の SEM 画像例を示 す。フィラメント上でプルトニウム粒子に 68% HNO₃ 10 μL を滴下し加熱乾燥したが、溶解 操作前後のα線スペクトルに変化が見られなかったため、68% HNO₃ + 38% HF 10 μL で再溶 解した。溶解操作後、SEM で粒子が残っていないことを確認し、α線測定した。溶解前後の α線スペクトルを図2に示す。

フィラメント上の操作であっても硝酸-フッ化水素酸の混酸を用いたプルトニウム粒子の 溶解は可能であった。また、溶解前後のスペクトルから全α線の計数率を比較しても、変化

が見られないこと から、溶解操作に よりフィラメント 背部へでいないこと も確認できたので、 本法により従来よ りも 開定が可能と なった。

¹⁾ D.Suzuki et al., Chem. Lett., 41, pp.90-91 (2012) Alpha-ray measurement of dissolved plutonium particle on the TIMS filament YASUDA, K., SUZUKI, D., KANAZAWA, K., MIYAMOTO, Y., ESAKA, F., MAGARA, M.

3B13 研究坑道内における平衡等価ラドン濃度

(原子力機構) ○古田定昭、池田幸喜、見掛信一郎、今枝靖博、永崎靖志、鈴木 一、野村幸広

【緒言】原子力機構の瑞浪超深地層研究所では、高レベル放射性廃棄物の地層処分技術に関する 研究開発として、立坑や水平坑道からなる地下研究坑道を設置し、地下水の水圧や水質の観測な どを実施している。研究所周辺は花崗岩地帯であることから、2012年、2013年に研究坑道内で平衡 等価ラドン濃度を測定し作業者の線量評価を行った。

【測定】2012年5月から12月、及び2013年6月から12月にかけて、主として平衡等価ラドン濃度 測定器 WLM-Plus(Tracerlab 社製)を用いて断続的に測定した。測定は、過去の測定で比較的高い 値が観測された深度300mの水平坑道の二箇所で実施した。

【測定結果】季節的な変化として夏季に高くなる傾向が見られた。これは外気温が高いことにより地 下坑道の自然換気が抑制されたためと考えられる。日変化としては、送風機停止後の夜間に濃度が 高くなる傾向が見られると同時に、夏季に送風機運転直後に押し出されたラドンによると思われるピ ーク状の濃度変化が見られ、この時に最大値 3,300 Bq/mが観測された。

【線量評価】作業者は観測機器の点検やデータ回収等で当該場所に入坑するため、その線量評価 を行った。被ばく線量は、国連科学委員会報告(2000年)の線量換算定数 9×10⁶ mSv/(Bq·h/m³)を 用いて算出した。深度 300m への送風機の運転は、入坑が予定されていない休日は停止するが、平 日は運転される。この送風機の運転に伴って平衡等価ラドン濃度が大きく変化することから、線量評 価については、作業者の入坑時間帯 10 時~15 時のデータを基に算出することとした。測定器で記 録されるデータが正時前 1 時間の平均的な濃度を示しているため、その時間帯を含むデータを評価 対象として送風機運転中の 11 時~15 時のデータを抽出して集計した。また、安全側の評価となるよ う、二箇所で得られた濃度のうち高い方の値を評価に用いた。

【評価結果】月毎に入坑時間帯の最大濃度(1時間値)と、その月の平均濃度を算出した結果を下表 に示す。なお、2012年5月~7月については、入坑時間帯のデータは存在しない。最大濃度は2013 年7月の1,880 Bq/m³であり、月毎の平均濃度の最大は2013年8月の765 Bq/m³であった。これは、 7月16日から実施した送風機の連続運転により、データが安定しピーク状の値が観測されなくなった が、7月と比較すると全体的に濃度が高くなったためと考えられる。線量評価に当たっては、月毎の 平均濃度を用いて、入坑記録から作業時間を毎月10時間と仮定して評価した。作業者の被ばく量 の月最大値は下表の最下段に示すように2013年8月の約0.069 mSv となった。年間線量算出に当 たっては、表に示す他の月はデータがないためその前後の月平均濃度と同じと仮定し、9月と11月 については2012年の方が高いため安全側に2012年の値を用い、他の月は2013年の値を用いて 集計した。その結果、作業者の年間線量は約0.35 mSv となり、公衆の線量限度である1mSv を超え ていないことが確認された。なお、季節変化として冬季は濃度が低下するため、仮定した濃度を用い て評価した年間線量は実際よりも大きな値となっていると考えられる。

Year			2012						2013			
Month	Aug,	Sept.	Oct.	Nov.	Dec.*	June*	July	Aug.*	Sep.	Oct.	Nov.*	Dec
EECRn Maximum(Bq/m³)	522	572	235	137	98	479	1880	986	824	573	40	184
EECRn Average(Bq/m³)	363	492	157	115	91	406	684	765	427	231	37	106
Effective Dose(mSv)	0.0327	0.0443	0.0141	0.0104	0.0082	0.0365	0.0616	0.0689	0.0384	0.0208	0.0033	0.0095

Table EECRn and estimated effective dose to workers

*Data collected less than 3 days

EEC radon in underground research facilities (JAEA) FURUTA,S., IKEDA,K., MIKAKE,S., IMAEDA,Y., NAGASAKI,Y., SUZUKI,H., NOMURA,Y.

3B14 インド洋における Be-10 の深度分布の南北断面図

(日大文理¹、日大院総合基²、弘大被ばく医³、東大博物館⁴)〇山形武靖¹、井 上慶祐²、田副博文³、松崎浩之⁴、永井尚生¹

【緒言】 宇宙線生成核種である¹⁰Be(半減期 136 万年)は大気上層で二次宇宙線と大気中の窒素、酸素との核反応で生成する。生成後エアロゾルに吸着し降下するため、大気中の¹⁰Be 濃度は緯度分布を持つ。またそれに伴い海洋表層における¹⁰Be 濃度は緯度分布を持つ。海洋では表層の濃度が低く深層になるにつれて濃度が増大するリサイクル型の深度分布を持ち平均滞留時間は数百年から千年程度と言われている。¹⁰Be の供給源は大気のみであること、表層の濃度が緯度分布を持つことから海洋循環のトレーサーとして用いることが出来る可能性があるが、¹⁰Be は測定が難しいことから海洋中の濃度分布はまだ分かっていない。そこで本研究ではインド洋の¹⁰Be 濃度の南北縦断観測を行い、濃度の断面図を作り、深度分布の成因について考察することを目的とした。

【実験】 試料は学術研究船白鳳丸 KH-09-5 次航海 (2009/11/6 - 2010/1/10)において CTD-CMS を 用いて採取した 20L の海水を用いた。試料に濃塩酸 20mL を加え酸性にした後、鉄ベリリウ ム担体 (Fe 0.5g, Be 0.2mg)を加えた。濃アンモニア水 25mL で鉄共沈を作成した。鉄沈殿を溶 解し陰イオン交換で鉄を除き、陽イオン交換で Be を精製した。強熱し BeO として東京大学 MALT において ¹⁰Be-AMS を行った。

【結果と考察】インド洋における¹⁰Be 濃度の深度分布の断面図を図に示す。500m 以浅の¹⁰Be 濃度は中緯度域 20-30°S で高く、20°N から赤道と 40°S 以南で低いことが分かった。これは現 在まで報告のある太平洋の緯度分布と一致する。これは中緯度域が大気大循環モデルにおけ る下降域に位置するため、上層大気から下方への輸送量が増加し、洋上大気の¹⁰Be 濃度が増 加したことにより海洋混合層へ¹⁰Be の沈着量が増加したためであると考えられている。南極 海の深度 300m 以深からインド洋の 2000m 以深に向けて¹⁰Be 濃度の高い水塊が北に舌状にの びていることが見て取れた。これは北大西洋深層水と南極深層水が混合した深層普遍水の分 布と一致している。また船上で測定された栄養塩濃度と比較すると、硝酸塩、リン酸塩より ケイ酸塩に近い分布となった。大西洋の¹⁰Be 濃度は低いことから¹⁰Be は生物生産の高い南極 において珪藻の遺骸などの沈降粒子に付着し降下し、300m 以深で沈降粒子の分解とともに溶 解し、付加され北方向へ移動していると考えられる。

North-south transection of Be-10 concentration in seawater in the Indian Ocean YAMAGATA, T., INOUE, K., TAZOE, H., MATSUZAKI, H., NAGAI, H.

3B15 天然鉱物を利用したパルス光励起蛍光法の線量測定への適用 (原子力機構¹)○藤田博喜¹

【緒言】天然鉱物からの放射線誘起光励起蛍光(OSL)現象は、線量測定や年代測定に利用されている。しかし、これまでのOSL測定(連続的に励起光を照射する方法)では、石英以外の鉱物からの蛍光は測定時に妨害となるために、目的鉱物である石英を砂利や石材等から抽出する必要があった。

近年、海外の研究者が、パルス OSL 測定法(パルス的に励起光を照射する方法)は、石英の OSL をその他の鉱物からの OSL と弁別して測定できる可能性を示した。そこで、この方法を緊急時の線量測定法に応用することを考え、測定器の開発、測定条件の最適化を行い、 実試料への適用試験を行った。

【実験】まず、パルス OSL 測定装置を開発し、励起光パルスの幅と間隔、検出されるパルス OSL の特性に係る試験を実施した。なお、この性能試験には、鉱物標本から抽出した石英及 び長石を使用した。

次に、茨城県内の神社において採取した表土を使用して、パルス OSL 測定条件の最適化を 行った。表土は 9 地点で採取し、2 地点の表土から石英を抽出した。この石英と鉱物標本か ら選択した長石を混合し、これに一定線量(4.2 Gy)の X 線を照射した。この試料にパルス OSL 測定法を適用し、得られる線量値が 4.2 Gy となる測定条件を求めた。その後、この測定 条件で、一定線量(4.2 Gy)を照射した表土の線量を再現できるかどうかについての試験をし た。

最後に、京都大学原子炉実験所の所有する標準γ線源で一定線量(4.3 Gy)を照射した9地 点の表土の線量測定をパルス OSL 測定法で行い、本方法の妥当性を評価した。

なお、これらの実験においては、採取した表土に太陽模擬装置を使用して光照射を行い、 それらの表土が記憶していた過去の放射線照射の影響については、取り除いたものを使用した。

【結果】装置の性能試験において、オシロスコープを用いて、その励起光のパルス幅が最小で 1µ秒であること(1µ秒から40µ秒で設定可能)、そのパルス間隔が最小で200µ秒であるこ と(200~800µ秒で設定可能)を確認し、当初計画した装置の性能の得られていることが分 かった。さらに、鉱物標本の石英と長石を使用して、パルス OSL 測定を行い、海外の研究者 と同様なパルス OSL の信号を得られた。

次に、2地点の表土から抽出した石英と長石の混合物に、パルス OSL の測定条件を変化させ、得られる線量値を求めたところ、パルス幅が 40 µ s、パルス間隔が 200 µ 秒の組み合わせの時に、最もよく照射された線量と一致した。このパルス OSL 測定条件で、照射した表土の線量値を求めたところ、同様に照射した線量と一致した。よって、パルス OSL 測定条件は、上記のパルス幅と間隔に決定した。なお、この測定における検出下限値は、0.3~1 Gy であった。

最後に、γ線を照射した9地点の表土に、パルス OSL 測定法を適用して線量値を求めたと ころ、6地点の表土で、照射した線量と一致した線量値を得ることができた。しかし、3地点 の表土では、線量値が異なったため、このパルス OSL 測定法の適用範囲については、今後さ らに研究を進める必要のあることが分かった。

Application of pulsed optically stimulated luminescence using natural mineral to retrospective dosimetry

Fujita, H..

3B16 放射線耐性を持つ緩歩動物クマムシに関する研究

(静大技術部1、静大院理2)〇宮澤俊義1、大矢恭久2

【緒言】クマムシは、節足動物に近縁の緩歩動物門に含まれ、体長1mm以下の水生生物であ り、陸上のコケの中から深海まで、地球上のあらゆる所に分布している。肢は4対あり、節 足動物の様な関節は無く、肢の先には爪がある。脱皮を繰り返して成長し、脱皮した殻に十 数個の卵を産む。このクマムシの最大の特徴は、水分が無くなり乾燥状態になると、自ら体 を縮めて樽状になり、休眠状態になる。「クリピトビオシス」と言われるこの休眠状態になる と、様々なストレス耐性を持つようになる。百年以上生きる、高温や超低温、真空や高気圧、 特に放射線にはどんな放射線にも耐えると言われてきた。しかし、クマムシのストレス耐性 の特に放射線耐性に関する報告は少ない。発表者は静岡大学理学部附属放射科学研究施設の 74T60Coy線照射装置を使用して、放射線照射実験からクマムシの放射線耐性の限界値を探 った。あわせて高温・低温のストレス耐性実験も行ったので、報告する。

【実験】クマムシはどのコケにもいるわけではなく、市街地に多く見られる、ギンゴケの中に 高確率でいる事が分かった。ギンゴケを採集してきて、水を張ったシャーレに半日浸すと、 クマムシが休眠状態から覚めて、水中で動き出す。観察されたクマムシは、オニクマムシと チョウメイムシであったが、大型で数が多いオニクマムシ(Milnesium tardigradum)を実験で 使用した。水中のオニクマムシをマイクロピペットで吸い取り、ろ紙上に移すと水分が抜け て次第に体を縮め、ろ紙が完全に乾くと、最後は樽状になって休眠状態に入る。この状態の クマムシを水に浸すと、体を伸ばして休眠状態から覚め、元の形態に戻り動き出す。以後の 実験はこの樽状のオニクマムシを使用して実験を行った。

- (1) 冷凍庫(-20℃) に一晩入れて凍らせてから、取り出して水を加える。
- (2) ドライアイス(-78℃)上に、休眠状態のオニクマムシをろ紙ごと乗せて、1時間置く。
- (3) マイクロチューブに、休眠状態のオニクマムシをろ紙ごと入れて、液体窒素(-195℃)に 10分間浸してから取り出して、水を加える。
- (4) 電子レンジに休眠中のオニクマムシをろ紙ごと入れて、3分間加熱する。
- (5) 60Coγ線照射装置で、休眠状態のオニクマムシに 1000Gy,2000Gy,3000Gy,4000Gy,5000Gy を照射する。

【結果】

- (1) 低温実験は、冷凍庫、ドライアイス、液体窒素ともほぼすべての実験個体で、休眠から 覚めて動き出す事が確認された。
- (2) 電子レンジで加熱実験は、すべての個体で休眠から覚めて動き出すのが確認できた。
- (3) γ線照射実験では、4000Gyまで、休眠状態から覚める事が分かった。なお照射後の寿命 は、高線量照射になると短くなる事が分かった。

本実験から、オニクマムシには低温、高温に耐性が有る事が確認できた。また放射線は、4000Gy まで耐える事が分かったが、高線量照射では照射後の寿命が短くなる事が示唆された。

Study on tardigrades with radiation resistance MIYAZAWA,T.,OYA,Y.