一般講演

9月10日(木) 2A01-2A11:A 会場 2B01-2B11:B 会場

2A01 ノーベリウムの化学実験に向けたアルカリ土類金属の硫酸バリウム共沈実験

(阪大院理¹、京大複合研²)○速水翔¹、笠松良崇¹、渡邉瑛介¹、中西諒 平¹、東内克馬¹、高宮幸一²、篠原厚¹

【緒言】ノーベリウム(No)は原子番号 102 番のアクチノイド元素である。ランタノイドや アメリシウム(Am)以降の重アクチノイドは水溶液中での安定価数がすべて+3 価であるの に対し、No のみが+2 価であり、2 族元素に類似しているという性質が報告されている。し かし、これまでの結果は塩化物イオンと No の反応に限られており[1]、その化学的性質を 詳しく知るためには他の系での実験が必要であった。本研究グループでは過去に水酸化サ マリウム共沈法を用いて水酸化物イオンと No の錯形成挙動を調べた[2]。その結果、No と 比較対象のアルカリ土類金属で異なる化学的性質を示すことが初めて分かった。No のさ らなる化学的性質の解明に向けて、本研究では硫酸イオンとの反応に着目し、硫酸アンモ ニウムを用いる硫酸バリウム共沈法を開発した。アルカリ土類金属の硫酸バリウム共沈な らびに沈殿挙動を調べ、No 実験の実験条件を決定した。

【実験】⁴⁷Ca、⁸⁵Sr、¹³³Ba および²²⁶Ra を含む 0.01 M 塩酸溶液にキャリアとして塩化バ リウム水溶液 10 μL を加え、硫酸アンモニウム溶液を加えて 5 分間攪拌し共沈を生成 し、吸引ろ過を行った。得られた沈殿をメンブレンフィルターに捕集し、γ線強度から 沈殿収率を算出した。また、Ra の実験では Ba の添加量を様々に変えて実験を行い、α線 測定した際のピークの半値幅から最適な Ba 添加量を決定した。さらに、Sr と Ba について はマクロ量の金属を用いて沈殿実験を行い、硫酸バリウム共沈との挙動の比較を行った。

【結果・考察】硫酸バリウム共沈実験で観測された挙動はそれぞれの元素によって異な ることがわかった。これは各元素の硫酸塩の溶解度積に応じたものとなっており、溶 解度積が小さいほど共沈収率が高くなっている(図1)。また、Srでは硫酸イオン濃度が 大きくなると錯イオン形成を起こして沈殿が溶解し共沈収率が低下する傾向がみられ た。マクロ量の沈殿挙動と硫酸バリウム共沈挙動を比較すると、概ね同じ挙動を取っ ていることがわかった。以上より、硫酸バリウム共沈実験により硫酸イオンと金属の 錯形成を調べられることが確かめられた。Raの沈殿試料のα線測定では、添加する Ba

量に応じてピークの半値幅が増加す ることがわかった。添加量が多いと α線ピークの半値幅が大きくなる点 と、少ないと収率が下がる点を考慮 して、最適な添加量は 10~20 μg で あると結論付けた。これらの結果か ら、Noの硫酸バリウム共沈実験に適 した実験条件を決定し、比較データ を得ることができた。

- [1] R.J. Silva, et al., J. Inorg. Chem. 13, 9, (1974)
- [2] 二宮ら、日本化学会 第 99 春季年会、

2D4-46 (2019)

Coprecipitation experiment of alkaline earth elements with Barium sulfate, towards the experiment of element 102, No.

HAYAMI S., KASAMATSU Y., WATANABE E., NAKANISHI R., TONAI K., TAKAMIYA K., SHINOHARA A.

2A02 105 番元素ドブニウムオキシ塩化物のオンライン等温ガスクロマトグラフ 挙動

(原子力機構¹,茨城大学², PSI³,大阪大⁴,新潟大⁵,筑波大⁶,徳島大⁷)
o佐藤哲也^{1,2}、Nadine M. Chiera^{1,3}、富塚知博¹、床井健運⁴、鈴木颯人^{1,2}、
伊藤由太¹、浅井雅人¹、白井香里^{1,5}、井上浩樹⁵、安達サディア⁶、柏原
歩那⁶、牧井宏之¹、廣瀬健太郎¹、西尾勝久¹、永目諭一郎¹、渡邉瑛介⁴、
阪間 稔⁷、後藤真一⁵

原子番号が100を超える超重元素領域では、強い相対論効果の化学的性質への影響に興味がもたれている。我々は、105番元素ドブニウム(Db)の化学的性質を明らかにするため、 5族元素オキシ塩化物を対象にオンライン等温ガスクロマトグラフ実験をおこなった。

装置は、反応室、分離カラム(等温カラム)およびガスジェット槽から構成され、核反応槽に直結されている(図1)。核反応によって合成された核反応生成物は、キャリアガス流により反応室に輸送され、反応ガス N₂/SOCl₂(酸素濃度1%)との反応により、揮発性化合物へと変換される。生成した揮発性化合物は、揮発性に応じた効率で一定温度に保たれた分離カラムを通過し、カラム末端に到達したのち、He/KCl ガスジェット搬送法により搬送・捕集される。これを放射線測定することで、分離カラム温度に対する収量変化として等温ガスクロマトグラフ挙動を観測することができる。

実験は原子力機構タンデム加速器実験施設で行った。Dbの同族元素であるNbおよびTa の短寿命核種⁸⁸Nb(半減期 $T_{1/2} = 14.5$ 分)および¹⁷⁰Ta($T_{1/2} = 6.76$ 分)を用いて、それぞれの 等温ガスクロマトグラフ挙動から、石英表面におけるNbおよびTaオキシ塩化物の吸着エ ンタルピー(ΔH_{ads})を求めた[1,2]。さらに同一の実験条件下で、²⁶²Db($T_{1/2} = 33.8$ 秒)の挙 動をしらべ、Dbオキシ塩化物の ΔH_{ads} を得た。NbおよびTaの ΔH_{ads} と比較したところ、5 族元素の揮発性が、Nb > Ta ≥ Db となることを実験的に明らかにすることができた。

図 1. 標的槽直結型オンライン等温ガスクロマトグラフ装置

¹⁾N. M. Chiera et al., *Inorg. Chim. Acta*, 486 (2019) 361-366.
 ²⁾N. M. Chiera et al., *J. Radioanal. Nucl. Chem.* **320** (2019) 633-642.

On-line Isothermal Gas Chromatographic Behavior of Oxychlorides of Group-5 Elements, Nb, Ta, and Db SATO, T. K., CHIERA, N. M., TOMITSUKA, T., TOKOI, T., SUZUKI, H., ITO, Y., ASAI, M., TSUKADA, K., SHIRAI, K., INOUE, H., ADACHI, S., KASHIHARA, A., MAKII, H., HIROSE, K., NISHIO, K., WATANABE, E., SAKAMA, M., GOTO, S., NAGAME, Y.

HF/HNO3系における Db の陰イオン交換挙動

2A03 (筑波大院人間¹、筑波大院数理²、阪大放射線機構³、原子力機構先端研 ⁴、理研仁科セ⁵、阪大院理⁶、筑波大数理物質系⁷)〇加藤瑞穂¹、安達 サディア²、豊嶋厚史³、塚田和明⁴、浅井雅人⁴、羽場宏光⁵、横北卓也 ⁵、小森有希子⁵、重河優大⁵、Wang Yang⁵、森大輝⁵、柏原歩那²、中島 朗久²、鈴木雄介²、西塚魁人²、床井健運⁶、末木啓介⁷

【緒言】これまで、超アクチノイド元素である 105 番元素 Db のフッ化物錯体に関し、 HF 系及び HF/HNO₃系における陰イオン交換樹脂への吸着挙動が調べられてきた[1,2]。 Db の分配係数(K_d)は、同族元素である Nb、Ta 及び擬同族元素の Pa と比較して Ta>Nb>Db>Pa という順列であることが示されたが、その化学種までは分かっていない。 最近、我々は HF/HNO₃溶液系において HF 濃度の増加に伴う Nb の K_d 値の急激な増加、 化学種の変化を確認した[3,4]。本研究では、Db フッ化物錯体の化学種決定に向け、 HF/1.0 M HNO₃水溶液中での ^{88g}Nb、¹⁷⁰Ta 及び ²⁶²Db のオンライン陰イオン交換実験を 行った。

【実験】HF/1.0 M HNO₃ 水溶液における^{88g}Nb (*T*_{1/2}=14.5 min)、¹⁷⁰Ta (*T*_{1/2}=6.67 min)、及 び²⁶²Db (*T*_{1/2}=34 s)のオンライン陰イオン交換実験を行った。^{88g}Nb、¹⁷⁰Ta、²⁶²Db は、理 化学研究所 K70 AVF サイクロトロンを用いて、それぞれ^{nat}Ge(¹⁹F, *xn*)^{88g}Nb、^{nat}Gd(¹⁹F, *xn*)¹⁷⁰Ta、²⁴⁸Cm(¹⁹F, 5*n*)²⁶²Db 反応により製造した。これらの核反応生成物は He/KCl ガ

スジェットで化学室まで搬送した。迅速化 学分離装置(ARCA)に生成物を導入し、 ⁸⁸gNb、¹⁷⁰Ta は 4.4-14.5 M HF/1.0 M HNO₃ に、²⁶²Dbは14.5 M HF/1.0 M HNO3 にそれ ぞれ溶解した。この溶液を、陰イオン交換 樹脂(三菱化学 MCI GEL CA08Y)で充填し たカラム(0 1.6 mm×7 mm)に 1 mL min⁻¹で 流し、溶離した。^{88g}Nb、¹⁷⁰Ta は得られた フラクションの放射能を Ge 半導体検出器 で測定し、溶離曲線を取得した。この溶離 曲線から分配係数(K_d)を算出した。²⁶²Db は、一定量の溶液をカラムに流した後、第 二溶液を流し、それらを Ta 皿に捕集して 蒸発乾固させた。自動α線計測装置を用い てα線測定を行った後、試料のγ線を Ge 半導体検出器で測定した。

【結果と考察】Nb、TaのKd値は、バッチ法の結果を再現し、イオン交換反応が十分に 平衡に到達していることがわかった。また、バッチ法と同様に、Nbの急激なKd値上 昇、すなわち化学種の変化が確認された(図1)。Kd値が増加した濃度範囲でDbのKd値 変化を調べることで、その化学種を推論できると考えられる。また、²⁶²Dbの14.5M HF/1.0 M HNO3での陰イオン交換実験を350回行った。²⁶²Dbのαイベントを第一フラ クション、第二フラクションにそれぞれ3カウント、2カウント観測した。DbのKd値 は約40 mLg⁻¹と推定される。実験結果の詳細と化学種の考察は当日の発表で報告する。 【参考文献】[1] Tsukada et al., *Radiochim. Acta.*, 97, 83-89 (2009). [2] Kasamatsu et al., *Chem. Lett.*, 38, 1084-1085 (2009). [3]豊嶋ら、第59回放射化学討論会 1B05 (2015). [4]安 達ら、第63回放射化学討論会 P17(2019).

Anion-exchange behavior of Db in HF/HNO₃ solution

KATO, M., ADACHI, S., TOYOSHIMA, A., TSUKADA, K., ASAI, M., HABA, H., YOKOKITA, T., KOMORI, Y., SHIGEKAWA, Y., WANG, Y., MORI, D., KASHIHARA, A., NAKAJIMA, A., SUZUKI, Y., NISHIZUKA, K., TOKOI, K., SUEKI, K.

(理研仁科セ¹、阪大院理²、阪大理³)○横北卓也¹、笠松良崇²、渡邉瑛 介²、小森有希子¹、重河優大¹、森大輝¹、王洋¹、二宮秀美²、速水翔²、 東内克馬³、ゴーシュコースタブ¹、篠原厚²、羽場宏光¹

【緒言】超重元素の錯形成定数や化学種の議論を行うためには、化学平衡下における 実験データの取得が必要である。これを達成するため、我々の研究グループは、分配 反応の時間依存性を調べ、超重元素に対して化学平衡到達を観測することが可能なバ ッチ型固液抽出装置 (AMBER) を用いた実験を行ってきた^{1,2}。最近、我々は、Rfの硫 酸塩錯体を調べるため、硫酸系における Rfの陰イオン交換実験を行っている³。0.11 M H₂SO₄ で Rfの分配係数 (K_d) を取得した結果 ($K_d < 15 \text{ mL g}^{-1}$)、Rf がこの硫酸濃度で陰 イオン錯体を形成しない、または、陰イオン錯体を形成しているけれども、カウンタ ーイオン (SO₄²⁻と HSO⁴⁻) が樹脂の吸着サイトに優先的に吸着しているという 2 つの 可能性が示唆された。そこで、今回、カウンターイオン濃度がより低い 0.060 M H₂SO₄ を含め、複数の硫酸濃度において、Rf の K_d 値を取得した。

【実験】²⁶¹Rf 及び ¹⁶⁹Hf は、理化学研究所 AVF サイクロトロンを利用し、 ²⁴⁸Cm(¹⁸O,5*n*)²⁶¹Rf及び ^{*nai*}Gd(¹⁸O,*xn*)¹⁶⁹Hf反応にて製造した。これらの核反応生成物は、 He/KCl ガスジェット搬送システムにて、化学実験室に迅速搬送し、AMBER の溶液化 部に捕集した。捕集した核反応生成物は 0.060–0.48 M H₂SO₄に溶解し、陰イオン交換 樹脂を含む化学反応容器に送液した。10、30、90 秒間振とうした後、空圧により化学 反応容器から溶液のみを溶出させ、その溶液を Ta 皿に捕集した。その後、自動 a 粒子 計測装置を用いて、²⁶¹Rf の a スペクトロメトリーを行った。測定後の試料は、Ge 検出 器を用いて、¹⁶⁹Hf の γ 線測定を行った。また、溶液の標準放射能を調べるため、樹脂 を使用せずに同様の操作を行う比較実験も行った。 K_d 値は、 $K_d = (A_c - A_s)V/A_{sw}$ (A_c : 標 準放射能; A_s : 液相の放射能; V: 溶液体積; w: 樹脂量) という式を用いて算出した。

【結果・考察】上記の実験を 482 回行い、²⁶¹Rf及び ²⁵⁷No の α イベントを 73 カウント 観測した。0.060 M H₂SO₄ における Rf の K_d 値の振とう時間依存性を調べたところ、 K_d 値は、振とう時間によらず低い値 ($K_d < 25 \text{ mL g}^{-1}$)となった。このことは、今回の条 件で、Rf が陰イオン交換樹脂へほとんど吸着しないことを示している。また、0.060-0.48 M H₂SO₄ の濃度範囲で Rf の K_d 値を取得したところ、これらの K_d 値は硫酸濃度によら ず、低いまま ($K_d < 30 \text{ mL g}^{-1}$)であった。この傾向は、擬似同族元素の Th と同じであ った。Th は、低濃度の H₂SO₄ 中では、陰イオン錯体を形成しないことが知られている ため ⁴、Rf も同様に陰イオン錯体を形成していないことが予測される。また、 K_d 値の 順序が、Zr > Hf » Rf であることから、Rf は同族元素の Zr と Hf に比べて硫酸との錯形 成反応が進行しにくいと示唆される。

【参考文献】

(1) Y. Kasamatsu, J. Nucl. Radiochem. Sci. 18, 24 (2018).

(2) T. Yokokita et al., Dalton Trans. 45, 18827 (2016).

(3) 横北卓也 他, 日本放射化学会第 63 回討論会(2019), 1A08 (2019).

(4) D. Langmuir and J. S. Herman, Geochim. Cosmochim. Acta 44, 1753 (1980).

Anion exchange of Rf in H₂SO₄: H₂SO₄ concentration dependence of distribution coefficients YOKOKITA, T., KASAMATSU, Y., WATANABE, E., KOMORI, Y., SHIGEKAWA, Y., MORI, D., WANG, Y., NINOMIYA, H., HAYAMI, S., TONAI, K., GHOSH, K., SHINOHARA, A., HABA, H.

LG-SIMS 装置のウラン粒子自動測定 (APM) におけるミキシング効果
の低減

(原子力機構¹)○富田涼平¹、江坂文孝¹、蓬田匠¹、宮本ユタカ¹

【緒言】 大型二次イオン質量分析装置(LG-SIMS)はミクロンサイズのウラン粒子1個 に対する精密な同位体比分析において空間分解能1µm以下の高い能力を発揮する。し かし、ウラン粒子の同定を行う自動測定(APM)は精密分析と比較して広いビーム径の一 次イオンビームで広い領域を走査する必要がある。そのため精密分析ほどの空間分解 能を保てず、近接する複数の粒子を一つの粒子として検出することで誤った結果を含 む問題(粒子のミキシング)があった。そこで既知の同位体比を持つ複数の標準ウラン 粒子を混合した試料を作成し、APMによってどの程度のミキシングが発生するかを確か めた。また、ミキシングを低減する方法としてウラン粒子を走査型電子顕微鏡で拾い 出す従来法(マニピュレーション法)を用いた手法を検討した。

【実験および結果】 同位体比が既知である4種の標準ウラン粒子(U010、U100、U350、 U850)が混在する試料を作成した。この試料に対する APM では1単位を 350×350 µm²、 一次イオンビーム電流値1.5 nA、測定時間9 sec、プレスパッタリング2 sec とし、²³⁴U、 ²³⁵U、²³⁶U、²³⁸U、²³⁸U¹H を同時に検出した。この測定を繰り返すことで試料台中心から半

径 8500 µm の円形範囲を網羅した。APM に よって得られた結果が図 1 である。検出さ れた粒子数 5976 個に対して標準粒子の参 照値±5%の範囲外にある本来存在しない同 位体組成を示す粒子(図 1:黒点)は 1943 個 検出された。U850 粒子の同位体組成が参照 値から 10%程低下したのはウラン水素化物 生成比(²³⁸U¹H/²³⁸U)が平均 0.237 と高く、 ²³⁵U¹H が ²³⁶U 同位体として含まれることでウ

ラン全体に対する²³⁵Uの存在率が見かけ上低くなったためである。APM は粒子試料の全体像を迅速に把握する上で有効な機能であるが、精確さに問題が生じる場合があることがわかった。そこで粒子マニピュレーションで試料から 50-80 個のウラン粒子を分離した後に APM を実施することでより精確な分析結果を得ることを試みた。マニピュレーションを含めた APM の結果は発表にて紹介する。本発表には、原子力規制庁から委託を受けて実施した「保障措置環境分析調査」の成果の一部が含まれる。

The method to reduce "particle mixing" under automated particle measurement (APM) of LG-SIMS Tomita, R., Esaka, F., Yomogida, T., Miyamoto, Y.

2A06

マルチコレクター型 ICP-MS を用いた保障措置環境試料分析の検討 (日本原子力研究開発機構)。富田純平,富田涼平,鈴木大輔,安田健一 郎,宮本ユタカ

【緒言】保障措置環境試料中の極微量ウラン(U)及びプルトニウム(Pu)は,試料の 分解及び化学分離・精製後,誘導結合プラズマ質量分析装置(ICP-MS)により含有量 や同位体比を測定する.フェムトグラムからナノグラムの極微量UやPu同位体比を正 確かつ高精度で分析するには、シングルコレクター型 ICP-MS よりも、同位体の同時 検出が可能でネブライザーで生じる試料ミスト生成の変動や ICP のふらつきを無視で きるマルチコレクター型 ICP-MS(MC-ICP-MS)が有利である.

日本原子力研究開発機構 CLEAR では、MC-ICP-MS (Thermo Scientific 社製 Neptune XT)を整備し、存在度の低い U 同位体 (²³³U, ²³⁴U, ²³⁶U) や Pu 同位体 (²⁴¹Pu)を含む 極微量 U 及び Pu の精密な同位体比測定技術の整備に着手した.本発表では、 MC-ICP-MS を用いた環境試料中 U 同位体比の正確な測定法を整備することを目的に、存在度が高い U 同位体 (²³⁸U, ²³⁵U) ピークが低い U 同位体 (²³⁴U, ²³⁶U) ピークに与え る影響 (テーリング、水素化物 (²³⁵U¹H))の定量的評価、マスバイアス補正やイオン 検出器の効率補正を行う頻度、繰返し測定回数等について、種々の U 同位体標準溶液 を用いて検討を行ったので、その結果について報告する.

【実験】MC-ICP-MS 装置の検出部は 10 個のファラデーカップ及び 5 つのイオン検出 器から構成されており、²³⁸U をファラデーカップ,その他の U 同位体をイオン検出器 により測定した(マスバイアス測定時は,²³⁵U もファラデーカップで測定).測定の積 算時間は 4.2 秒とした.²³⁸U や²³⁵U のピークのテーリングや水素化物による影響評価 試験には,NBL CRM U015(U: 1 ppb)及び ²³⁶U の存在度が無視できるほどに低い U0002 (U: 10 ppb)標準溶液を用いた.測定精度を評価するためには U015標準溶液(U: 1 ppb) を用いて,5回,10回及び 20回の繰返し測定を行った時の標準偏差をそれぞれ調べた.

【結果と考察】極微量の²³⁶Uを正確に測定するためには、²³⁶Uピーク強度に対する²³⁸U や²³⁵Uピークのテーリング及び水素化物寄与の影響を定量的に評価する必要がある. U0002溶液のピーク強度測定から、²³⁸Uピーク強度の10⁸分の1がテーリングとして²³⁶U ピーク強度に影響することがわかった.この結果は、1 ppbのU溶液(²³⁸Uピーク強度 として約4x10⁶ cps相当)を測定した場合、²³⁶Uピークに0.04 cpsの影響を及ぼすこと を示唆した.U015標準溶液を用いた²³⁵U/²³⁸Uの繰返し測定回数に対する相対標準偏差 を図1に示す.一元配置分散分析を行った結果、これら相対標準偏差の平均値は、繰

返し測定回数の違いによる有意な差は見られなかった.²³⁴U/²³⁸U及び²³⁶U/²³⁸Uについても同様の結 果が得られた.試料の繰返し測定回数は,不確か さに関連する他の要因も考慮して決定する必要が あることが分かった.発表では,その他の影響に ついての定量的評価結果や本試料に最適な測定条 件を考慮したU同位体比測定法について発表する. 本発表には、原子力規制庁から委託を受けて実施した「保障措置 環境分析調査」の成果の一部が含まれる.

An examination of environmental sample analyses for safeguard using multi-collector ICP-MS TOMITA J., TOMITA R., SUZUKI D., YASUDA K., MIYAMOTO Y.

光量子放射化法による家庭ごみ焼却スラグの組成分析2

(都立大院理¹、東北大 ELPH²)〇秋山和彦¹、齋藤涼太¹、諏訪智也¹、Ali Ahmed¹、菊永英寿²、久冨木志郎¹

【はじめに】レアメタルなどを含む鉱物資源は世界の産業を支える非常に重要な資源で ある。資源小国である我が国は様々な鉱物資源を輸入に頼っている一方で、家電製品 や携帯電話などの廃棄物には非常に多くの鉱物資源が含まれており、「都市鉱山」など と呼ばれる廃棄物資源は豊富である。近年、こうした都市鉱山から鉱物資源をリサイ クルし、レアメタルの輸入量軽減を目指す試みがなされている。[1] 我々は、東京都の 家庭ごみ焼却灰を原料とした人口砂であるスラグを用いた鉱物資源リサイクルの可能 性を検討するため、その組成を分析してきた。本研究では、東京都と同様に家庭ごみ 焼却スラグを製造している神奈川県相模原市のスラグについて光量子放射化分析法な どを用いて組成分析を行い、その成分元素について東京都のスラグとの比較を行った。 【実験】神奈川県相模原市にて 2019 年 4 月、5 月、7 月に製造された家庭ごみ焼却スラ グをマグネット乳鉢で粉砕し、ここから 0.1 gを分取し、直径 9 φmm のペレット状に 加工した。このスラグペレットを高純度アルミホイルで包装し、各試料間に約2mgの Ni ホイルを入れて石英管に減圧封入し、照射試料とした。照射試料は東北大学電子光 理学研究センターにて 20 MeV の制動放射線を6時間照射した。比較標準試料として前 回定量値を決定した2017年9月に東京都で製造された家庭ごみ焼却スラグ0.1gを用い た。[2] 照射後、試料から放出されるy線を高純度 Ge 半導体検出器にて測定し、放射 化分析法では定量の困難なケイ素等については蛍光 X線分光装置によって分析した。 【結果及び考察】 神奈川県相模原市で製造されたスラグについて、本研究で定量された

主成分元素の平均酸化物組成は SiO₂(48.3%)、CaO(23.1%)、Al₂O₃(5.88%)、Fe₂O₃(4.12%)、 MgO(3.29%)、Na₂O(3.07%)、TiO₂(1.52%)で あった。図1にはスラグに含まれる元素に 度(地設中元素存在度で規格化) 10101 102 <u>د</u> ついて地殻中の元素存在度に対する相対濃 度を示した。図中赤でプロットした元素は Cu、Sb、Au などの相対濃度が 100 を超え る特に大きいものを示している。現在、国 が定める備蓄対象鉱種に相当する元素のう ち、相対濃度 100 以上である Au、 Sb の他、 相対濃度が1を超えるようなものは Ba、Cr、 衣罡 Co、Cs などであることが分かった。また東 京都のスラグと比較すると主成分元素はほ ぼ変わらないが、微量元素に関しては Mo の不在などの違いが見られた。

[1] 資源エネルギー庁 HP

2A07

(<u>https://www.enecho.meti.go.jp/about/special/tokushu/anzenhosho/koubutsusigen.html</u>) [2] 秋山和彦 他, 第 63 回放射化学討論会, 2B03(2019).

Composition of Slags Produced from Domestic Waste Determined by Photon Activation Analysis 2. AKIYAMA, K., SAITO, R., SUWA, T., ALI, A., KIKUNAGA, H., KUBUKI, S.

家庭ごみ焼却スラグ中の有価金属の組成変動と分離

2A08 (都立大院理¹、東北大 ELPH²) ○齋藤 涼太¹、秋山 和彦¹、Ali Ahmed S. A.¹、 Kahn Irfan¹、菊永 英寿²、久冨木 志郎¹

【緒言】"家庭ごみ焼却スラグ"は可燃ごみの焼却灰を 1200 ℃以上の高温で溶融・固化 してできる人工砂である。このスラグには複数の有価金属が含まれており¹、これらを 分離・回収することは資源リサイクルの視点から非常に重要である。先行研究では、 光量子放射化分析法を用いてスラグの組成分析を行ない、Cu, Au 等の有価金属含有量 とスラグ組成の 2018 年における年間変動を明らかにした。本研究では、資源としての 安定性を確認するために、多摩川清掃工場から採取されたスラグを光量子放射化分析 法で定量することで、2019 年におけるスラグ組成の年間変動を先行研究に引き続き調 べた。また、スラグには磁石に強く作用する成分が存在することを発見し、磁石によ る成分選別の可能性を検討した。

【実験】多摩川清掃工場において2019年1月から12月にかけて毎月採取された家庭ご み焼却スラグ(Slag1901-1912)を試料とした。これらの試料を乾燥・粉砕したものを約 0.1g分取して、直径9mmのペレット状に形成し高純度Al箔で包装した。定量のため の比較標準試料として前回定量を行ったスラグ試料(Slag1709)¹とCu箔にMo,Sb,Au の標準溶液を滴下乾燥したものを用いた。これらの試料及びフラックスモニタのNi箔 を石英管に減圧封入して、東北大学電子光理学研究センター(ELPH)において最大エネ ルギー20MeV、制動放射線を6時間照射した。これによって得られた放射化試料をGe 半導体検出器で測定し、定量値を得た。また、磁石を利用して分離した分画について も同様の方法で試料作成と制動放射線の照射を行い、組成を決定した。

【結果・考察】2019 年におけるスラグ中の 各元素の月ごとの平均値は、2018 年²にお けるスラグ中の各元素の月ごとの平均値と 同程度であり、スラグ組成は大きく変化し ていなかった。

磁石による成分選別の結果を図1に示した。 縦軸を分離前の濃度に対する分離後の濃度 の比とした。分離後の分画名としてA-2,C-2 は磁石に作用しない分画、C-1,D-1は磁石に 作用する分画とした。A-2 は粉砕前の砂状、 C-2,C-1 は粉砕後の粉末状、D-1 は粉砕する

ことができなかった固形の分画である。D-1 には、Ni(35 倍)、Co(85 倍)、Au(360 倍)が 濃縮していた。磁石選別後の分画に一部元素の濃縮が確認できたことから磁石による 選別は分離操作として有効である可能性が高いことが分かった。

[1] K. Akiyama, et al., ELPH Annual Report, Tohoku University, 117-120(2017).
[2]秋山和彦他,第63回放射化学討論会, 2B03(2019).

Variability in Composition of Domestic Waste Slag and Separation of Valuable Metal Elements from them SAITOU R., AKIYAMA K., ALI A.S.A., KHAN I., KIKUNAGA H., KUBUKI S.

2A09

Activation analysis of shells of Japanese basket clams (shijimi) (Grad. School of Sci., Tokyo Metropolitan Univ.) OMd. Sultanur Reza and Yasuji Oura

Introduction

We have determined (γ, n) reaction yield ratios, which have been incorporated in a single comparator method of instrumental photon activation analysis (IPAA). Determining elemental contents in geochemical and environmental reference materials, this analytical method was evaluated. Then Japanese basket clam (shijimi) shells were analyzed as an application of this method. Soft tissues of clams in the sea around are often used for monitoring an environmental condition such as contamination in coastal waters which is very important for our health. So, in this study shells of clams in brackish water or fresh water are selected for our target. Elemental contents in the shells obtained by activation analysis methods are examined if it is effective for monitoring brackish water condition.

Experiment

Clam shells were washed by ultrapure water using ultrasonic water bath and were made powder. About 180 mg of each powder sample was subjected to instrumental neutron activation analysis (INAA) and IPAA. Samples were irradiated for 30 seconds and 4 hours at KUR (1 MW thermal power) for INAA, 30 minutes and 4.5 hours by bremsstrahlung (maximum energy of 30 MeV) from an electron LINAC at ELPH, Tohoku Univ. for IPAA. After irradiation γ -rays were measured by HPGe detector. Elemental concentrations were determined by relative method for INAA and by single comparator method for IPAA.

Results

Ten shells of five individuals of shijimi were analyzed. In INAA (short and long irradiations), eleven elements (Ba, Br, Ca, Cl, Co, Cr, Fe, Mn, Na, Sr, and Zn) and in IPAA (long irradiation) ten elements (As, C, Ca, Cr, Mn, Na, Rb, Sr, Y and Zr) were detected under the analytical conditions used in this study. No contradictory results were observed in both methods. Elemental concentrations in two shells of an individual are almost same. Calcium contents in each individual were relatively constant (about 40%) which is the main element. Sodium and Sr contents were also constant, but concentrations of trace elements were not. For example, Mn concentrations were about 40 ppm in four individuals, but in the other one it was about 140 ppm.

Furthermore, shijimi shells of four different locations were analyzed. Concentrations of major and minor elements (Ca, Na, and Sr) were consistent both among 10 individuals at same location and among four locations within relative standard deviation of about 10 %. On the other hand, trace elemental concentrations varied among four locations. Although Ba is a same group element as Ca and Sr, its concentrations were different by 3 times among locations. Especially, Mn concentration was about 10 times different between 2 locations. No correlations between elemental concentrations and locations were observed.

2A10

中性子放射化分析による群馬県内の湖沼底質中の微量元素の定量 (都市大原研¹,都市大専攻²,群水試³,国環研⁴) 〇岡田往子¹,熊谷尚人²,渡辺峻³,野原精一⁴

【緒言】2011 年東京電力㈱福島第一原子力発電所の事故の影響で群馬県内では放射性物質による汚染が確認され、赤城大沼では8月に漁獲されたワカサギから 640 Bq/kgの放射性 Cs が検出された.その後、2015 年9月には食品基準値を下回り、ワカサギは解禁となったが、湖水及びワカサギの放射性 Cs 濃度の緩慢な減衰が続いている.その原因を探るため、中性子放射化分析法を用いて、赤城大沼を含めた群馬県湖沼の底質の元素分析を行い、解明の一助とする.

【実験】群馬県の11湖沼(天然湖:赤城大沼,榛名湖,農業用ため池:バラキ湖,丹 生湖,鳴沢湖,近藤沼,ダム湖:碓氷湖,神流湖,奥利根湖,草木湖,梅田湖)で

2015年9月に佐竹式コアサンプ ラー(外径 60 mm,長さ 500 mm) で採取した. 深さ0 mm-40 mm を分析試料とした.約 50mg を秤量して洗浄したポリエチレ ン袋に二重封入し,分析試料と した. 京都大学複合原子力科学 研究所の研究用原子炉KURにて Pn-3(1 MW: 熱中性子束 3.93× 10¹² n/cm²/s) 30 秒照射, Pn-2 (1 MW: 熱中性子束 4.66×10¹² n/cm²/s) 1 時間照射を実施し た. 定量には岩石標準試料 JLk-1 を用いた比較法で行った. 照射 後,適当な冷却後測定を行った. 解析は、ガンマスタジオ (SEIKO EG&G 社製) を用いた.

【結果】25 元素の定量値が得られた. どの湖沼でも主元素として Si が 20 %以上を占め,数%のAl, Fe, サブ%の Ti が含まれていた. Fig.1 に安定 Cs の含有量を示す. 榛名湖 1.4 µg/g~梅田湖 15 µg/g の範囲で 10 倍程度の変動であった. 安定 Cs

Fig.2 11 湖沼底質中の Ba, Sm, Ce, Eu, Ta 含有量

との相関係数が 0.8 以上の Ba, Sm, Ce, Eu, Ta にていて Fig.2 に含有量を示す. 碓氷湖 を除くダム湖の底質中の元素濃度が農業用ため池や天然湖と特に Ba, Sm, Ce の含有量 が大きく異なることが分かった. Cs 含有量と同じ傾向があることが分かった.

Determination of elements in sediments of lakes in Gunma prefecture by neutron activation analysis OKADA, Y., KUMAGAI, N., WATANABE, S., NOHARA, S.

中性子放射化分析法による高純度試薬中の Ir の高精度測定 2A11

(産総研¹、京大複合研²)〇三浦勉¹、飯沼勇人²、関本俊²

【緒言】我々は、国家計量標準としての単元素標準液を開発し、JCSS 制度に基づいて社会に 供給している。今後の課題は、貴金属元素と開発済みの Y 以外の希土類元素の単元素標準 液の開発である。貴金属元素は工業用途だけでなく、薬局方の改正により医薬品中の貴金 属元素濃度のガイドラインが示されたことで、トレーサビリティ源としての貴金属標準液のニー ズが高まっている。Pt、Pd 以外の Ru、Rh、Ir、Os は溶解が困難で開発の難易度が高い。この4 元素から、まず Ir 標準液の開発に向けた検討を始めた。単元素標準液は質量分率1 g/kg の 溶液を1 kg 調製する。例えば、金属 Ir を原料物質とすると、1 g の金属 Ir を溶解し、溶液化で きなければならない。金属 Ir 溶解法として、Carius tube 法、Na₂O₂ 溶融法、塩素化分解法があ るが、いずれも1 g の金属 Ir を溶解することは難しい。そこで、溶解しやすい原料物質候補と して高純度臭化イリジウムを選択し、その Ir 純度を中性子放射化分析法で評価した。

【実験】Alfa aesar 製 IrBr₄(Premion[®] 表示値, 99.99 %)を試料とした。1 日間減圧乾燥した IrBr4 を秤量済みのポリエチレン袋に 3 試料分取した。分取量はメトラートレド製ミクロ天秤 XP26 で 3.99 mg, 1.38 mg および 2.49 mg 秤量した。IrBr4 を秤量した 3 試料のポリ袋に、ろ紙 (Advantec 製 No.5C, 1 cm×1 cm)を入れた後、内標準として Au 溶液(質量分率;35 mg/g)を 20 mg程度添加した。Au溶液の添加量は天秤で秤量した。Au溶液添加後、ポリエチレン袋を シーラーで二重に溶封した。Ir 定量の比較標準として、Alfa aesar 製 Ir metal (Premion[®] 表示 値; 99.99%, 形状; powder)を用いた。Ir metal 比較標準は IrBr4 試料と同様な操作で 3 試料、 調製した。秤量値は 1.53 mg, 0.75 mg および 1.24 mg であった。 Ir metal 比較標準試料にも、 内標準として Au 溶液(質量分率;35 mg/g)を 20 mg 程度添加した。Au 溶液添加後、ポリエチ レン袋をシーラーで二重に溶封した。作成した IrBr4 試料と Ir metal 比較標準を照射キャプセ ルに入れ、京都大学複合原子力科学研究所研究用原子炉 KUR の気送照射設備 TcPn(熱中 性子束 4×10¹¹cm⁻²s⁻¹)で 10 分間照射した。2 時間程度冷却後、照射キャプセルを開封した。 IrBr4 試料と Ir metal 比較標準の外側のポリエチレン袋を交換し、測定用試料とした。中性子 照射で生成した¹⁹²Ir, ¹⁹⁴Ir, ¹⁹⁸Auの放出するγ線をサンプルチェンジャー付き Ge 半導体検出 器(Canberra GC4020-7500SL)で測定した。照射した試料のγ線は照射終了後3時間から18 日までの間に全試料を3回ずつ測定した。

【結果と考察】¹⁹⁸Au が放出する 411.8 keV の計数率/添加量(cps/g)を内標準として検量線を 作成し、IrBr4 中の Ir を定量した。本研究で定量した IrBr4 中の Ir 質量分率(0.3747 kg/kg ± 0.0032 kg/kg)は組成式からの計算値(0.3755 kg/kg)と不確かさの範囲内で一致した。内標準 を併用したことで、¹⁹²Ir(328 keV)と¹⁹⁴Ir(316 keV, 468 keV)における検量線の直線性は良好 で、検量線からの推定に基づく不確かさは相対値で 0.36 %であった。評価した拡張不確かさ の相対値は 0.86 %であり、非常に正確さが高い定量分析が達成できた。IrBr4 は純水に容易 に溶解することが可能であり、Ir 標準液の原料物質として有望と考えている。

Reference: T. Miura, Y. Iinuma, S. Sekimoto, JRNC, 2020, 324, 1007-1012.

Precise determination of Ir in high purity reagent by neutron activation analysis MIURA T., IINUMA Y., SEKIMOTO S.

超巨大磁気抵抗効果を示す La_{0.7}Ca_{0.3}MnO₃ 中ポーラロンの運動と 2B01 その凍結

(金沢大理工¹、金沢大人社²、阪大院工³、福岡大理⁴、京大複合研⁵) ○佐藤 涉⁻¹、小松田沙也加⁻²、清水弘通⁻¹、盛一遼平⁻¹、阿部 職 ¹. 渡辺祥太¹、小松俊介¹、寺井智之³、川田 知⁴、大久保嘉高⁵

【はじめに】ペロブスカイト型マンガン酸化物(AMnO₃)の中には、磁気転移にともな って電気抵抗が桁違いで変化する超巨大磁気抵抗効果(CMR)を示す化合物がある。 従来、CMRの発現機構は Mn³⁺-Mn⁴⁺間での e_g電子のホッピングによる二重交換相互作 用によって説明されてきたが、電荷や軌道の秩序やナノスケールレベルでの不均質な 構造が CMR の発現に関わっているとする研究例も多数報告されている。従って、マン ガン酸化物を機能性材料として応用するためには、バルクの物性情報に加えて磁気輸 送現象を微視的に調べることが重要となる。そこで本研究では、AMnO,の中でも顕著 な CMR 効果を示す La_{0.7}Ca_{0.3}MnO₃(T_C~250 K) に極微量の放射性プローブ核を導入し て、γ線摂動角相関法 (PAC) によって A サイトを占有するプローブ位置での超微細場 を測定した。特に Mn³⁺位置で e_g電子によって形成されると予測されているヤーン・テ ラーポーラロンの磁気転移点前後における動的挙動の変化に着目して実験を行った[1]。 【実験】La_{0.7}Ca_{0.3}MnO₃は、原料の金属酸化物と炭酸塩の高温空気中での固相反応によ って合成した。続いて、京大複合研の研究用原子炉において¹¹⁰CdOに中性子を照射し て¹¹¹Cd(←^{111m}Cd)プローブを生成した。この放射性の粉末 Cd(^{111m}Cd)O を La_{0.7}Ca_{0.3}MnO₃ と混合し、高温空気中で焼結して試料にプローブを導入した。PAC 測定は BaF2 シンチ レータを用いて行い、室温、201 K、77 K、4.2 K でスペクトルを得た。

【結果と考察】 Fig. 1 に La_{0.7}Ca_{0.3}MnO₃ 中に導入された¹¹¹Cd(←^{111m}Cd)プローブの PAC ス ペクトルを示す。室温のスペクトルには電場勾配と非対称パラメータの大きな成分(C1)

と両者ともに比較的小さな成分(C2)の2成分が7:3の 比で存在していることが判明した。この割合は、試料中 の Mn³⁺と Mn⁴⁺の存在比と一致しており、それぞれの成 分に対応するプローブが Mn³⁺と Mn⁴⁺の近傍に存在して いる可能性を示唆している。即ち、ヤーン・テラー効果 は Mn³⁺周辺に格子歪みをもたらすため、Mn³⁺の近傍に 位置する Cd プローブ核周辺も対称性の低い電荷分布を とっているものと考えられる。一方、Tc以下の温度(201 K) で得られたスペクトルでは、室温で観測された C1 成 分の振動パターンが消失していることが確認された。 C1 成分が速い指数関数緩和を示す現象は、プローブ核 が相関時間の長いなんらかの動的摂動を受けているこ とを示唆している。発表ではこの緩和を引き起こす運動

と、さらに低温での運動の凍結について議論する。

in $La_{0.7}Ca_{0.3}MnO_{3.3}$ 【参考文献】[1] W. Sato *et al.* Phys. Rev. B **100**, 184111 (2019). measured at temperatures indicated.

Dynamics of Polaronic Local Structures in a Colossal-Magnetoresistive Manganite La_{0.7}Ca_{0.3}MnO₃ SATO, W., KOMATSUDA, S., SHIMIZU, H., MORIICHI, R., ABE, S., WATANABE, S., KOMATSU, S., TERAI, T., KAWATA, S., OHKUBO, Y.

SrTi0₃中にドープされた ¹¹¹In(→¹¹¹Cd)の占有サイトと動的挙動の 観察

(1金大人社,2金大理工,3京大複合研)

○小松田 沙也加¹, 佐藤 渉², 大久保 嘉高³

【緒言】チタン酸ストロンチウム(SrTiO₃)は、半導体として光触媒材料等への応用が期待 されるペロブスカイト型酸化物の一つである。特に Ti⁴⁺サイトに対し価数が低くイオ ン半径の小さい Ga³⁺や In³⁺等の不純物元素が置換されると、ドーパント近傍に電荷補 償の酸素欠陥 V_oを生じたり、結晶格子の収縮による歪みが生じることで量子構造が変 化し光触媒機能等の物性を向上させると報告されている。一方で 3 価の不純物元素が Sr²⁺の位置を置換しドナーとして電気伝導性向上へ寄与する可能性も示唆されている。 このように不純物元素の占有状態が SrTiO₃の物性を制御する重要な因子となっており、 微量導入された不純物元素の占有サイトと果たす機能を原子レベルで調べた情報が必 要不可欠である。そこで我々は、SrTiO₃に¹¹¹Cd(←¹¹¹In)を微量ドープし、これをプロー ブとして用いた y線摂動角相関(TDPAC)法により SrTiO₃中にドープされた¹¹¹Cd(←¹¹¹In) の局在量子構造とその熱的挙動を調べた。

【実験】 試料は市販の酸化チタン(TiO₂)と炭酸ストロンチウム(SrCO₃)、¹¹¹In 塩酸溶液を 原料とする固相反応により合成した。TiO₂とSrCO₃の粉末が1:1となるようにメノウ 乳鉢中で1時間混合し、得られた粉末をペレット状に錠剤成型した。そのペレットに ¹¹¹In 塩酸溶液を滴下し空気中1473 K で24時間焼鈍した。得られた試料を粉砕し石英 管に真空封入した後、273 K~1000 K で TDPAC 測定した。

【結果と考察】Fig.1 に室温と 1000 K における SrTiO₃ 中 ¹¹¹Cd(←¹¹¹In)の TDPAC スペクト ルを示す。SrTiO₃ の構成元素はすべて非磁性元素であるため、電場勾配を仮定した成

分で解析を行った。解析結果から、室温では電気 四重極周波数 ω_{O1} = 48.9(1) Mrad/s、 ω_{O2} = 52.1(2) Mrad/s、 ω_{O3} =0 Mrad/sの3つの成分が観測された。 立方晶ペロブスカイト構造をとる SrTiO3 中の Sr,Ti サイト位置の電場勾配は本来0 であることか ら、ω₀₃は欠陥の無い Sr もしくは Ti サイト位置を 置換した¹¹¹Cd(←¹¹¹In)由来の成分と考えられる。 ω_{01}, ω_{02} の成分は値が 0 ではないことから、格子 間隙を占有しているか、もしくは近傍に欠陥が存 在する Sr, Ti サイトを占有している可能性が挙げ られる。1000 K では指数関数的に減衰する成分と *ω*₀₃=0 Mrad/s の 2 つの成分が観測された。指数関 数的に減衰する成分は、¹¹¹Cd(←¹¹¹In)プローブ核 の外場が時間的に変動する場合に観測される現象 である。従って、¹¹¹Cd(←¹¹¹In)が核外場から動的 な摂動を受けていると考えられる。発表ではこの 動的摂動についてより詳細に議論する。

Fig.1 TDPAC spectra of $^{111}Cd(\leftarrow^{111}In)$ in SrTiO₃ at room temperature and at 1000 K

Observation of Dynamic Behavior and Site Occupation of $^{111}Cd(\leftarrow^{111}In)$ Probe Doped in SrTiO₃ KOMATSUDA, S., SATO, W., OHKUBO, Y.

2B03 酸化亜鉛中における不純物 In の存在状態と電気伝導率の相関

(金沢大院自然¹、金沢大人社²、京大複合研³、金沢大理工⁴) 〇髙田真宏¹、清水弘通¹、小松田沙也加²、大久保嘉高³、佐藤渉^{1,4}

【緒言】酸化亜鉛(ZnO) への不純物ドナーの導入によって電気伝導性が向上することは広 く知られているが、機能性材料への応用のためには、不純物の状態を制御することが喫緊 の課題である。我々は、ZnO に In を不純物ドナーとして導入することで、電気伝導性の向 上を目指しており、本研究室の先行研究において微量の In を ZnO 中に均一に拡散させる ことに成功した[1]。本研究では不純物 In の導入によって電気伝導率を向上させることを 目的とし、さらに高濃度の不純物 In の ZnO 中への固溶を目指した。ZnO 中における In の 状態は¹¹¹Cd(←¹¹¹In)プローブの摂動角相関法(PAC 法)によって観察し、同条件で処理した ZnO の電気伝導性との相関を調べた。

【実験】ZnとInを目的の原子数比(Zn:In = 99.5:0.5)となるようにZnOとIn(NO₃)3・3H₂O を秤量・混合し、空気中の固相反応でInを導入した。得られた試料(IZO)に対し¹¹¹In 塩酸溶液を滴下した後、空気中1373Kで2時間焼成した。その後さらに<u>真空中1273K</u> で2時間ずつ試料を焼成していき、2時間焼成するごとにPAC測定を室温で行い、ZnO 中不純物Inの存在状態の焼成時間依存性を観察した。また、上記と同条件で調整し処 理を行ったZnOに対し電気伝導度測定を行い、ZnOの電気伝導率の真空中での焼成時 間依存性を調べた。

【結果】Fig.1 に IZO の PAC スペクトルにおい て観測された二つの成分の成分強度の焼成時 間依存性を示す。真空中における焼成時間が 増加するに従って凝集相成分は減少し、反対 に Zn 置換成分は増加する傾向が観測された。 凝集相成分とは ZnO と In によるスピネル型 の構造体(凝集相)の成分、Zn 置換成分は In が Zn サイトを置換している成分である[1]。この 観測結果は空気中焼成により形成した凝集相 が真空中での焼成により解離し、In が熱拡散 によって Zn サイトに移動することを示唆し ている。Fig.2 は IZO の電気伝導率の真空中に おける焼成時間依存性を示している。真空中 における焼成時間と共に電気伝導率が増加す る傾向が観測された。Fig.1とFig.2より、Zn 置換成分の成分強度とZnOの電気伝導率との 間に正の相関があり、Zn サイトに In を拡散 させることにより電気伝導率が向上すること が明らかとなった。

Fig.1 各成分強度の焼成時間依存性 (焼成条件:1273 K, 真空中)

Effect of thermal diffusion of In impurities in ZnO on its electrical conductivity TAKATA, M., SHIMIZU, H., KOMATSUDA, S., OHKUBO, Y., SATO, W.

2B04 ポリエチレンの放射線照射後のゲル分率の変化:陽電子消滅寿命 測定法による評価

(東北大院理¹、原子力機構²、東北大高教機構³)〇北田直也¹、岡壽崇²、 奥津賢一¹、山下琢磨^{3,1}、木野康志¹、関根勉^{3,1}

【緒言】

高分子材料は原子力発電所や加速器において絶縁体やケーブル被覆材として広く使われており、長期間厳しい放射線にさらされ、酸化や切断によって劣化が起こる。これは施設の安全性にとって重要な問題になる。我々はこれまでに放射線照射ポリエチレンを対象に、陽電子消滅寿命測定法 (PALS) による劣化の評価を試みてきた。PALSは、試料内部のナノスケールの空隙を非破壊で測定できるほぼ唯一の方法である。電子と陽電子で形成されるポジトロニウムのうち、スピン三重項のオルトポジトロニウム(o-Ps)の寿命と生成の相対強度を PALS により測定した。ゲル分率測定は、高分子の架橋度を評価する指標として知られているが、試料を有機溶媒に溶解させる破壊的測定法である。高密度ポリエチレン (HDPE) では電子線照射後に、時間経過とともに架橋の度合が減少し、これと相関して o-Ps の相対強度が減少した¹。本研究では、分子量が 100 万以上の超高分子量ポリエチレン (UHMWPE)、分子量が 30 万程度のHDPE、分子鎖に分岐のある低密度ポリエチレン (LDPE) にそれぞれッ線照射し、これらの試料のゲル分率測定を行い放射線による劣化を調べ、PALS による非破壊分析による評価と比較した。

【実験】

UHMWPE、HDPE、LDPE それぞれに対し、量子科学技術研究開発機構・高崎量子 応用研究所において真空・室温下でガンマ線を100-1500 kGy 照射した。これらの試料 をゲル分率測定と PALS を行った。最初の測定時に大気開放し、大気中・室温で保管 し、経時変化を測定した。ゲル分率の測定では試料を *p*-キシレンで加熱しながら 24 時 間溶解させ、溶解前後の質量比から求めた。PALS では ²²Na をβ線源として使用し、 β壊変に伴い放出されるγ線と試料内から放出される対消滅のγ線の時間差を計測し 陽電子寿命スペクトルを得て、寿命が 1 ns 以上の寿命を持つ成分を *o*-Ps 成分とした。 【結果・考察】

HDPE、LDPE はゲル分率が 0-100%の間で、UHMWPE ではゲル分率が 80-100%の間 でそれぞれ変化した。これらの変化と o-Ps の相対強度との間に相関が見出された。一 方、o-Ps 寿命は、線量や時間経過に対して変化はなかった。つまり経時変化による酸 化やそれに伴う分子鎖切断などの構造変化は、o-Ps の生成過程に影響し、生成した o-Ps が高分子内の空隙で消滅する過程には影響しないことが示唆された。時間経過ととも に、高分子内に取り込まれた酸素による酸化によってカルボニル基が生成し¹分子鎖が 切断され、架橋の度合が低下し、ゲル分率が低下したと考えられる。また、o-Ps 生成 がカルボニル基によって阻害され、o-Ps の相対強度も減少したと考えられ、この機構 によりゲル分率測定と PALS の o-Ps 相対強度の間に相関関係が見られた。今回の結果 から、PALS は、ゲル分率測定に代わる非破壊の高分子の放射線劣化に有効な分析法と なる。

【参考文献】 1 K. Onodera, T. Oka, Y. Kino, T. Sekine, J. Phys.: Conf. Series 791 (2017) 012026.

Change in gel fraction of polyethylene after irradiation: Evaluation by positron annihilation lifetime spectroscopy KITADA, N., OKA, T., OKUTSU, K., YAMASHITA, T., KINO, Y., SEKINE, T.

ミュオン特性 X 線測定による鉄の酸化反応の追跡 2B05

(阪大院理¹、京大複合研²、阪大 RCNP³、大同大教養部⁴)〇梶野芽都¹、 二宫和彦¹、工藤拓人¹、寺田健太郎¹、稻垣誠²、佐藤朗¹、友野大³、 川島祥孝3、酒井陽一4、高山努4、篠原厚1

【緒言】負ミュオン(以下、単にミュオンと書く)は電子と同じように原子核に束縛され、 ミュオン原子と呼ばれる原子を形成する。ミュオン原子の形成時、ミュオンは主量子 数の大きい外殻のミュオン原子軌道に捕獲され、その後ミュオン特性 X 線を放出しな がら 1s 状態へとカスケード遷移する。ミュオンは電子の 207 倍大きな質量を持ってい るために、束縛エネルギーは 207 倍となり、ミュオン特性 X 線は非常に高エネルギー で透過力が高い。そのため、ミュオン特性 X 線による試料内部の非破壊分析法の開発 が進められており、考古学分野等の貴重試料への適用で注目されている[1]。

一方、ミュオン原子形成過程には化学的な影響があることが知られている。化学状 態によりミュオンが捕獲される状態がわずかに変化し、ミュオン特性 X 線の Ka線と K ₃線の放出比率などが化学状態により異なる。そのため、ミュオン特性 X 線の放出確 率を詳細に調べることで、元素分析のみならず化学状態分析が可能であると期待され る。本研究では Fe に着目し、その酸化反応をミュオン特性 X 線の測定から追跡した。 【実験】ミュオン照射実験は大阪大学核物理研究センター(RCNP)内のミュオンビーム施 設 MuSIC にて実施した。使い捨てカイロ(アイリス・ファインプロダクツ製「貼れない カイロレギュラー」)の酸化反応にあわせて 12 時間ミュオンを照射し、発生したミュ オン特性 X 線を連続的に Ge 検出器で測定した。また、酸化していない金属鉄及び完 全に酸化が終了したカイロ(使用済カイロ)についてもそれぞれ3時間程度分析した。こ れとは別に、カイロの時間ごとの化学状態の変化をメスバウアー測定にて調べた。

【結果·考察】使用済カイロのミュオン特性 X 線スペクトルを図1に示す。カイロに含ま れる元素である Fe,O,Cl に由来するミュオン特性 X 線が同定され、これとメスバウア ー測定の結果から Fe の化学形は β-FeOOH であると決定した。本研究では Fe の KX 線 について、試料ごと、また酸化反応時間ごとに X 線強度を決定し、全 KX 線強度に占

めるK_aX線強度が金属鉄で は 67.4(7)%であったのに対 し使用済みのカイロでは 73.7(7)%であった。酸化反 応時間依存を調べると、酸 化反応が進行するにつれて K_aX 強度は増加し使用済み のカイロの値に近づくこと が分かり、その時間変化の 様子はメスバウアー測定に よる分析結果と整合した。

Observation of oxidation reaction of metal iron by muonic X-ray measurement KAJINO, M., NINOMIYA, K., KUDO, T., TERADA, K., INAGAKI, M., SATO, A., TOMONO, D., KAWASHIMA, Y., SAKAI, Y., TAKAYAMA, T., SHINOHARA, A.

CdTe 検出器を用いた負ミュオンによる非破壊三次元イメージン 2B06 グ法の開発

(阪大理¹、Kavli IPMU²、JAXA³)〇邱 奕寰¹、梶野 芽都¹、篠原 厚¹、二宮 和彦¹、武田 伸一郎²、桂川 美穂²、都丸 亮太²、藪 悟郎²、長澤 俊作²、高橋 忠幸²、渡辺 伸³

【緒言】 試料を破壊せずに、物質内部の元素を分析する手法は、考古物や地球外物質など 貴重な試料を扱う分野において有用である。我々は高強度の負ミュオンビームを使って、非破 壊の元素分析法の開発を行ってきた。ミュオン特性 X 線は電子の特性 X 線に比べエネルギ ーが 200 倍高く透過力の高い X 線を利用することにより、物質の深部に存在する元素を分析 することが可能である。

近年、宇宙観測実験用に位置分解能が優れた二次元テルル化カドミウム検出器(以下 CdTe 撮像検出器)が実用化された。本研究ではこの検出器によるイメージング法と、負ミュオンビー ムによる元素分析法で実用化されている深度分析を組み合わせることで、非破壊3次元イメ ージング法を確立することを目的にする。CdTe 撮像検出器を用いた負ミュオンビーム実験と、

実験データの妥当性を評価するため、素粒子、医療 や天文学分野でよく使われている Geant4 プログラ ムによるシミュレーション実験を行った。

【実験】2020年3月、J-PARC加速器施設において、ポリプロピレン製のボールへの高強度ミュオンビームの照射実験を行った。実験セットアップを図1で示す。ビーム中心に合わせて置いたサンプルを30分ごとに22.5度ずつ回転させ、CdTe撮像検出器でミュオン特性X線を測定した。

【結果と考察】 試料由来の炭素から放射したミュオ ン特性 X 線である 75 keV エネルギー領域を選択す ることで、二次元イメージの再構成を行った。さらに 異なる角度で取得した全16個イメージ像を用いるこ とで、コンピュータ断層撮影の技術で二次元イメージ を三次元空間に逆投影し、ミュオン特性 X 線による

図1:2020年3月に J-PARC で実施した実験全体像。

3D イメージ像を作成した。その結果、直径 12.7mm のポリプロピレン製のボールの立体像を 再現することができ、CdTe 撮像検出器で 3D イメージングが可能であることを示した。現在、よ り詳細なイメージを作成するために CdTe 撮像検出器の量産機の開発とともに、専用の検出 器システムの検討が進んでいる。また、これらの実験におけるセットアップを Geant4 プログラ ム上において再現し、シミュレーション実験を行った。実験結果を再現するシミュレーション結 果が得られたことに加えて、バックグラウンドの由来の評価を行った。

Development of non-destructive 3D image method using muon beams with CdTe Double-sided Strip Detector.

Chiu I., Kajino M., Shinohara A., Ninomiya K., Takeda S., Katsuragawa M., Tomaru R., Yabu G., Nagasawa S., Takahashi T., Watanabe S.

2B07 陽電子消滅分光法およびメスバウアー分光法による Fe₃04</sub>中不純物 In の占有状態観察

(金沢大院自然¹、金沢大理工²)〇石崎隆太郎¹、清水弘道¹、佐藤渉^{1,2}

【序論】逆スピネル型構造の四酸化三鉄(Fe₃O₄)は、Fe 原子が存在し得るサイトにおいて多数の空格子点を有することから、そのサイトへの不純物元素のドーピングによって磁性や電気伝導性を制御する試みが盛んに行われている。先行研究において、Fe₃O₄中に非磁性のインジウム(In)が極微量(~100ppt)の不純物として導入された場合、室温において In は四面体格子上の Fe 位置(A サイト)に存在することを示唆する結果が得られたが[1]、巨視量の不純物 In が導入された場合、その占有状態については未だ明らかになっていない。そこで本研究では、空格子点を高感度に観察できる陽電子消滅分光法と Fe の占有状態を観察できる ⁵⁷Fe メスバウアー分光法を採用して、不純物として導入した In 原子の Fe₃O₄ 中での存在状態の濃度依存性を調べた。

【実験】Fe₃O₄に In₂O₃を目的の In 濃度(0.5~8 at.%)となるようにそれぞれ混合し、 錠剤成型後、石英管に真空封入して 1,373 K で 48 時間焼成した。粉末 X 線回折(XRD) 測定によって二次相の有無、ならびに格子定数の変化を確認した後、室温で PALS 測 定、DBS 測定および ⁵⁷Fe メスバウアー分光測定を行った。

【結果と考察】Fig. 1 に PALS 測定の結果を示す。固溶させた In の量の増加に伴い、空格子点で消滅した成分の陽電子寿命が徐々に減少する傾向が観測された。この結果は イオン半径の大きな In が Fe 位置を置換したことによって In に隣接している酸素原子

が圧迫され、その酸素原子によって囲まれている空隙の体積が縮小したことを示唆している。さらに、 Fe、In とイオン半径の異なる不純物元素(Ga、Co) を混合した Fe₃O₄の陽電子寿命を測定することで、 イオン半径と寿命の増減の関係性を確認した。

DBS 測定で得られた結果は、In が 8 at.%導入され た試料において高い運動量を持つ電子との消滅割 合の増加を示した。これは空隙体積が縮小したこと により、陽電子と酸素原子の原子核近傍に存在する 内殻電子との消滅割合が増加したことを示してお り、PALS 測定と整合する結果である。

Fig. 2 にメスバウアー測定で得られた Fe のサイト 占有比を示した。Fe₃O₄ 中で In 量の増加に伴い、Fe の A サイト成分の減少が観測された。これは導入し た In が A サイトの Fe と置換していることに起因し ている。また、スペクトルから得られた異性体シフ ト、超微細場の値についても In が置換していること を示唆する結果が得られた。

[1] W. Sato et al., J. Appl. Phys. 120, 145104 (2016).

[2] H. Shimizu et al., Appl. Rad. Isot. 140, 224 (2018).

Residential Site of Impurity In Atoms in Fe₃O₄ Observed by Means of Positron Annihilation Spectroscopies and Mössbauer Spectroscopy ISHIZAKI, R., SHIMIZU, H., SATO, W.

Fe-Ag 系 Hofmann 型錯体における Mossbauer 分光法 2B08

(東邦大理¹)〇北清航輔¹、高橋正¹、北澤孝史¹

【緒言】Hofmann 型構造とは、Fe・Ni・Cd などの中心金属の エクアトリアル位に直線二配位の[M(CN)2](M = Ag, Au)また は平面四配位の[M(CN)4](M = Ni, Pd, Pt)が配位し、アキシャ ル位にピリジン系配位子が配位した Fig.1 のような2 次元層 状構造のことである。次に、スピンクロスオーバー現象とは、 温度や圧力・光などの要因により中心金属の電子配置が高ス ピン(HS)状態と低スピン(LS)状態の間で可逆的に変化する現

象のことを指す。鉄由来の SCO 現象を示す錯体において、57Fe Mössbauer 分光法による研究が当研究室によるものを含め数多 く行われている¹⁾。これは、⁵⁷Fe Mössbauer スペクトルの異性 体シフト・四極子分裂の幅・分裂数が鉄の価数、スピン状態、 鉄周辺の環境に依存するため、SCO 現象による中心鉄の環境変 化を分析することが可能であるためである。今回私は、Fe-Ag 系 Hofmann 型錯体 Fe(4-methylpyrimidine)2[Ag(CN)2]2 を合成し、 その物性を調べた。

【実験】 錯体は直接法により合成した。まず、Fe(II)源である Mohr 塩を容器中で水に溶解し、そこに配位子、シアン化銀カリウム水溶 液の順に滴下し、生じた沈澱を濾過した。生成物については、元素 分析により目的の組成であることを確認した。得られた錯体に ついて、磁化率測定・結晶構造解析及び⁵⁷Fe Mössbauer 測定を 行った。まず、磁化率測定では、この錯体はヒステリシスのあ る1段階のスピン転移を示した。次に、単結晶構造解析により、 この錯体は Hofmann 型構造をとっており、構造中のピリミジン環 の窒素原子のうちメチル基の向かい側の N 原子は中心鉄原子に配 位し、メチル基に隣接したN原子は架橋配位子[Ag(CN)2]2中のAg 原子と接近していた。また、相転移が140Kと130Kの間で起き ていることも明らかになった。最後に、この錯体について 57Fe Mössbauer 測定を行ったところ、Fig. 2 のような 130 K から 140

1) T. Kitazawa, T. Kishida, T. Kawasaki and M. Takahashi, Hyperfine Interact., 238, 1 (2017). Mössbauer spectroscopic research of Fe-Ag type Hofmann-type spin-crossover complex KITASE, K., TAKAHASHI, M., KITAZAWA, T.,

Fig. 1.Hofmann 型構造

HS(Cooling SQUID)

160

2B09 ナトリウム電池電極材料 Na₂Ru_{1-x}Fe_xO₃のメスバウアースペクトル

(電通大院¹、理研仁科セ²) 〇濱野健太郎¹、小林義男^{1、2}、羽場宏光²、上野秀樹²

【緒言】

Na イオン電池はその原料の豊富さから Li イオン電池に代わる次世代電池として期待 されている。Na₂RuO₃ はナトリウム過剰層状酸化物の一種であり、Na イオン電池の正 極材料として有望である。メスバウアー分光法は充放電による Ru イオンの酸化状態を 評価する有用な手段である。⁹⁹Ru メスバウアースペクトルの測定は遷移エネルギーが 高い(89.7 keV)ため測定が低温に限られるため、⁵⁷Fe メスバウアー分光法を用いて Ru サイトの酸化状態の温度依存性を評価するために⁵⁷Fe をドープした Na₂Ru_{1-x}Fe_xO₃を調 整した。本研究では、電気化学的処理を行った Na₂Ru_{1-x}Fe_xO₃ に対して、⁹⁹Ru および ⁵⁷Fe メスバウアー分光法、X 線回折を行なったので報告する。

【実験】

RuO₂、Fe₂O₃、NaHCO₃を組成比に合わせて混合し、850℃、Ar 雰囲気で 12 h または 48 h 焼成し、試料を調整した。理研 AVF サイクロトロンを用いて ⁹⁹Ru(p, n)⁹⁹Rh 反応によ り ⁹⁹Rh (T_{1/2} = 15.0 d)を生成した。線源、試料共に液体ヘリウムクライオスタッド中で 4.2 K に冷却し、⁹⁹Ru メスバウアースペクトルを得た。電気化学処理は Na₂Ru_{1-x}Fe_xO₃ 80 wt%、アセチレンブラック 10 wt%、PVDF 10 wt%を混合し、塗布した Al 箔を正極、カーボンを負極とし、電解質は 1M NaBF₄(EC : DMC =1 : 1 容量比)を用いて、4V の直流 電流を印加した。

【結果·考察】

Na₂Ru_{0.99}Fe_{0.01}O₃は X 線回折より、 Na₂RuO₃に帰属される単一相であること を確認した。Fig. 1 に充電前後の Na₂Ru_{0.99}Fe_{0.01}O₃の⁹⁹Ruメスバウアースペ クトルを示す。充電前後のスペクトル共 に Doublet2 成分で解析した。A は I.S. = -0.30(1) mm/s、Q.S. = 0.26(1) mm/s であり、 Na₂RuO₃に一致した。B は周囲に Fe が存 在する環境を表している。充電後のスペ クトルでは C は *I.S.* = -0.16(2) mm/s、*Q.S.* = 0.33(4) mm/s, D $\ddagger I.S. = -0.10(3) \text{ mm/s}$, *Q.S.* = 1.38(5) mm/s となり、明らかに Ru イオンは酸化されていることが示された。 充電による Na 欠損での Ru イオンの価数 変化、構造変化について 57Fe メスバウー 分光と合わせて議論する。

Fig. 1 Na₂Ru_{0.99}Fe_{0.01}O₃の⁹⁹Ruメスバウアース ペクトル (測定温度: 5 K)

[1] M. de Boisse et al. Nat. Commun. 7, 11397 (2016).

Mössbauer spectroscopic studies of Na₂Ru_{1-x}Fe_xO₃ of sodium-ion battery electrode Hamano, K., Kobayashi, Y., Haba, H., Ueno, H.

アルカリハライドにイオン注入した ⁵⁷Fe/⁵⁷Mn インビーム・メスバ ウアースペクトル

(電通大院基盤理工¹、理研仁科センター²、ICU³、東理大理⁴、阪大院理 ⁵、金沢大院理⁶、日大医⁷、放医研⁸) ○喜地雅人¹、濱野健太郎¹、高濱 矩子¹、佐藤方実¹、小林義男^{1,2}、久保謙哉³、山田康洋⁴、三原基嗣⁵、 佐藤渉⁶、長友傑²、岡澤厚⁷、佐藤眞二⁸、北川敦志⁸

【緒言】

インビーム・メスバウアー分光法は、短寿命メスバウアー親核 ⁵⁷Mn(半減期 1.45 分)を固体試料中へ直接注入し、β壊変で生成したプローブ核 ⁵⁷Fe から放出されるメ スバウアーγ線の共鳴吸収をオンラインで測定する方法である。検出されたメスバウ アースペクトルから、「孤立した ⁵⁷Fe 原子」の電子状態を知ることができる。

アルカリハライドは主にレーザーなどの光学材料として用いられている。光学材料 は製造工程の際に不純物として鉄が混入するため、可視光透過率が低下してしまう問 題がある。光学材料を高効率で使用するためには、高純度の必要があるが、微量不純 物の定量は非常に難しく、どのような挙動をするかわかっていない。そこでインビー ム・メスバウアー分光法と DFT 計算を用いて、アルカリハライド内の不純物のミクロ な挙動や化学状態、配位環境などの知見を深めることを目的として研究をおこなった。

【実験】

実験は、放射線医学総合研究所の重イオン加速 器施設 HIMAC でおこなった。一次ビーム⁵⁸Fe と 生成標的⁹Be との入射核破砕反応により得た多数 の不安定短寿命核の中から⁵⁷Mn を破砕片分離装 置で最適化した。⁵⁷Mn を最適化後、適当な厚さの 減衰板を通過させて試料へ直接打ち込んだ。メス バウアーγ線の測定は平行平板電子なだれ型検出 器 PPAC を用いておこなった。[1]

【結果·考察】

アルカリハライド LiF、NaF、NaCl、KCl のイン ビーム・メスバウアースペクトルを得た。得られ たスペクトルはいずれも一つのシングレットと二 つのダブレットの三成分で解析できた。得られた メスバウアーパラメータと DFT 計算から、Fe 原 子の占有位置はカチオン置換位置で、シングレッ トは欠陥無しの成分、二つのダブレットは欠陥あ りの成分であると同定できた。また、NaCl 型の構 造をもつ LiF、NaF、NaCl、KCl それぞれのスペク トルの類似性・相違性を議論する。

[1] 小林義男, 表面化学, 31, 230-236 (2010).

In-beam Mössbauer spectra of ⁵⁷Fe after ⁵⁷Mn implantation in alkali halides Kiji M., Hamano K., Takahama N., Sato M., Kobayashi Y., Kubo M. K., Yamada Y., Mihara M., Sato W., Nagatomo T., Okazawa A., Sato S., Kitagawa A.

5⁷Co 発光型メスバウアー分光法を用いたスピネル型フェライト中 2B11 Co サイトの同定

(金沢大院自然¹、金沢大理工²)○阪口 純¹、竹中 聡汰¹、佐藤 渉^{1,2}

【緒言】

コバルトフェライト Co_xFe_{3-x}O₄は 0 $\leq x \leq 1$ の範囲においてキュリー温度 Tc = 793~858 K をもつフェリ磁性酸化物であり、コバルトに由来する高い磁気異方性を有すること が知られている。近年では、その半導体的特性からスピントロニクス分野での応用が 期待されており、磁性や電気伝導性の向上に関する研究が盛んに行われている。しか し、Co の占有位置やそれらの磁性への寄与に関する詳細は未だ解明されていない。本 研究では、⁵⁷Co 発光型・⁵⁷Fe 透過型メスバウアー分光法を用いて、Fe₃O₄ と CoFe₂O₄ 中 の⁵⁷Fe(\leftarrow ⁵⁷Co)プローブ核位置での局所場の情報を基に Co 占有サイトの同定を試みた。 【実験】

Fe₃O₄粉末とCo₃O₄粉末を目的の割合となるよう秤量・混合し錠剤成型した後、1273 K で48時間焼成しCoFe₂O₄を作製した。Fe₃O₄と作製したCoFe₂O₄に⁵⁷Co塩酸溶液を滴下し、1373 Kで2時間熱拡散させた後、7~295 Kの温度範囲で⁵⁷Co発光型メスバウアー分光測定 を行った。また、⁵⁷Fe透過型測定も同じ温度範囲において行った。各焼成は試料を石英 管中に真空封入した状態で行った。

【結果と考察】

Fig. 1 に CoFe₂O₄の ⁵⁷Fe 透過型測定と ⁵⁷Co 発光型測定により得られたメスバウアー 分光スペクトルを示す。解析の結果、各成分の面積比から大多数の Co が B サイトを占 有していることが明らかとなった。また、B サイトに帰属される成分が 2 成分観測さ れ、両者の面積比は ⁵⁷Fe 透過型測定と ⁵⁷Co 発光型測定の間で一致した。B サイトの超

微細場はAサイトの状態を反映しており、複数 のBサイト成分の存在は一部のCoがAサイト を占有していることを示唆している。スピネル 型構造においてBサイトカチオンは酸素原子を 介して6個のAサイトカチオンと隣接しており、 このサイトを第二近接Aサイトとよぶ。CoがA サイトに存在する場合、6ヶ所の第二近接Aサ イトを占有するFeとCoの組み合わせから、B サイトには7種類の環境が考えられる。6ヶ所 の第二近接Aサイト全てをFeが占有している ものをB₀、1ヶ所以上をCoが置換しているも のをB₁としてBサイト成分を帰属した。第二近 接Aサイトを占有するCoの理論的な確率分布 とフィッティングの結果から、7.5±0.5%のCo がAサイトを占有していると見積もられた。

Identification of Co sites in spinel ferrite by means of ⁵⁷Co emission Mössbauer spectroscopy SAKAGUCHI, M., TAKENAKA, S., SATO, W.